Cho hà số f(x) liên tục trên (0; + vô cùng) và f(x) + 2f(1/x) = x, với mọi x thuộc

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\)\[f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = x\], \[\forall x \in \left( {0; + \infty } \right)\]. Tính giá trị của tích phân \[I = \int\limits_{\frac{1}{2}}^2 {xf\left( x \right)dx} \].

A. \(\frac{{15}}{8}\)

B. \(\frac{9}{8}\)  

C. \(\frac{{13}}{8}\)


D. \(\frac{1}{8}\)


* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp giải:

- Đặt \(t = \frac{1}{x}\), suy ra hệ phương trình, giải tìm \(f\left( x \right)\).

- Tính tích phân \(I = \int\limits_{\frac{1}{2}}^2 {xf\left( x \right)dx} \), có thể sử dụng MTCT.

Giải chi tiết:

Theo bài ra ta có: \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = x{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\), \(\forall x \in \left( {0; + \infty } \right)\).

Đặt \(t = \frac{1}{x}\) , khi đó (1) trở thành \(f\left( {\frac{1}{t}} \right) + 2f\left( t \right) = \frac{1}{t}\), suy ra \(f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{1}{x}\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = x}\\{f\left( {\frac{1}{x}} \right) + 2f\left( x \right) = \frac{1}{x}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = x}\\{4f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = \frac{2}{x}}\end{array}} \right.\)

\( \Rightarrow 3f\left( x \right) = \frac{2}{x} - x \Leftrightarrow f\left( x \right) = \frac{1}{3}\left( {\frac{2}{x} - x} \right)\)

Vậy \(\int\limits_{\frac{1}{2}}^2 {xf\left( x \right)dx} = \frac{1}{3}\int\limits_{\frac{1}{2}}^2 {\left( {2 - {x^2}} \right)dx} = \frac{1}{3}\left. {\left( {2x - \frac{{{x^3}}}{3}} \right)} \right|_{\frac{1}{2}}^2 = \frac{1}{8}\).

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK