Hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng

Câu hỏi :

Hai hình bình hành \(ABCD\)\(ABEF\) không cùng nằm trong một mặt phẳng. Trên cạnh \(AC\) lấy điểm \(M\) và trên cạnh \(BF\) lấy điểm \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}} = k\). Tìm \(k\) để \(MN//DE\).

A. \(k = \frac{1}{3}\)

B. \(k = 3\)

C. \(k = \frac{1}{2}\)


D. \(k = 2\)


* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp giải:

- Trong \(\left( {ABCD} \right)\) gọi \(S = DM \cap AB\). Trong \(\left( {ABEF} \right)\) gọi \(S' = EN \cap AB\).

- Sử dụng định lí: Giao tuyến của hai mặt phẳng phân biệt thì đồng quy hoặc đôi một song song chứng minh \(S \equiv S'\).

- Sử dụng định lí Ta-lét.

Giải chi tiết:

Hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng (ảnh 1)

Trong \(\left( {ABCD} \right)\) gọi \(S = DM \cap AB\). Trong \(\left( {ABEF} \right)\) gọi \(S' = EN \cap AB\).

Để \(MN//DE\) thì \(M,{\mkern 1mu} {\mkern 1mu} N,{\mkern 1mu} {\mkern 1mu} D,{\mkern 1mu} {\mkern 1mu} E\) đồng phẳng.

Khi đó ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {MNDE} \right) \cap \left( {ABCD} \right) = MS}\\{\left( {MNDE} \right) \cap \left( {ABEF} \right) = ES'}\\{\left( {ABCD} \right) \cap \left( {ABEF} \right) = AB}\end{array}} \right.\)

\( \Rightarrow MS,{\mkern 1mu} {\mkern 1mu} ES',{\mkern 1mu} {\mkern 1mu} AB\) đồng quy.

\( \Rightarrow S \equiv S'\) hay \(DM,{\mkern 1mu} {\mkern 1mu} EN,{\mkern 1mu} {\mkern 1mu} AB\) đồng quy tại \(S\).

Khi đó ta có hình vẽ như sau:

Hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng (ảnh 2)

Áp dụng định lí Ta-lét ta có: \(\frac{{AM}}{{MC}} = \frac{{AS}}{{CD}} = \frac{{AS}}{{AB}}\); \[\frac{{BN}}{{NF}} = \frac{{BS'}}{{EF}} = \frac{{BS}}{{AB}}\].

Theo bài ra ta có: \[\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}} \Rightarrow \frac{{AM}}{{AC - AM}} = \frac{{BN}}{{BF - BN}}\]\[ \Rightarrow \frac{{AM}}{{MC}} = \frac{{BN}}{{BF}}\]

Từ đó suy ra \[\frac{{AS}}{{AB}} = \frac{{BS}}{{AB}} \Rightarrow AS = BS\] \[ \Rightarrow S\] là trung điểm của \[AB\].

Khi đó ta có: \[\frac{{AM}}{{MC}} = \frac{{AS}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AM + MC}} = \frac{1}{{1 + 2}} \Rightarrow \frac{{AM}}{{AC}} = \frac{1}{3}\].

Vậy \[k = \frac{1}{3}\].

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK