Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng (ABCD) trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng (ABCD) một góc \({30^0}\).Tính khoảng cách d từ B đến mặt phẳng (SCD) theo a.
A.\(d = \frac{{2a\sqrt 5 }}{3}\)
B. \(d = \frac{{2a\sqrt {21} }}{{21}}\)
C. \(d = \frac{{a\sqrt {21} }}{7}\)
D. \(d = a\sqrt 3 \)
Bước 1: Gọi \[O = AC \cap BD\] Tính BO, CH, HD theo a.
Gọi\[O = AC \cap BD\]
Ta có \[{\rm{\Delta }}ABC\] dều cạnh a có H là trọng tâm
\[ \Rightarrow BO = \frac{{a\sqrt 3 }}{2},CH = \frac{{a\sqrt 3 }}{3},HD = \frac{4}{3}BO = \frac{{2a\sqrt 3 }}{3}\]
Bước 2: Tính SH theo a.
Mặt khác,\[(\widehat {SD,(ABCD)}) = \widehat {SDH} = {30^ \circ }\]
\[ \Rightarrow SH = HD \cdot \tan \widehat {SDH} = \frac{{2a}}{3}\]
Lại có\[CH \bot AB \Rightarrow CH \bot CD\]
Bước 3: Kẻ \[HK \bot SC(K \in SC)\] Chứng minh \[HK \bot CD\]
Kẻ \[HK \bot SC(K \in SC)\]
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{SH \bot CD}\\{CH \bot CD}\end{array} \Rightarrow CD \bot (SHC) \Rightarrow HK \bot CD \Rightarrow HK \bot (SCD)} \right.\)
Bước 4: Tính\[d\left( {B,\left( {SCD} \right)} \right)\]
\[ \Rightarrow d(H,(SCD)) = HK = \frac{{SH.HC}}{{\sqrt {S{H^2} + H{C^2}} }} = \frac{{2a\sqrt {21} }}{{21}}\]
Mà\[\frac{{d(H,(SCD))}}{{d(B,(SCD))}} = \frac{{HD}}{{BD}} = \frac{2}{3} \Rightarrow d(B,(SCD)) = \frac{{a\sqrt {21} }}{7}\]
Đáp án cần chọn là: C
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK