Phương pháp giải:
- Gọi x là số tiền của Tim và y là số tiền của Tom (đô) \[\left( {x;y > 0} \right)\].
- Lập 2 phương trình hai ẩn \[x;{\mkern 1mu} {\mkern 1mu} y\]
- Sử dụng phương pháp cộng đại số xác định \[3x - y\].
Giải chi tiết:
Gọi x là số tiền của Tim và y là số tiền của Tom (đồng) \[\left( {x;y > 0} \right)\].
Vì Nếu Tom cho Tim 12 đô, cả hai sẽ có số tiền như nhau nên ta có phương trình: \[x + 12 = y - 12{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\]
Vì Nếu Tim cho Tom 12 đô, Tom sẽ có số tiền gấp 5 lần Tim nên ta có phương trình: \[5\left( {x - 12} \right) = y + 12{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)\]
Từ (1) và (2) ta có hệ phương trình \[\left\{ {\begin{array}{*{20}{l}}{x + 12 = y - 12}\\{5\left( {x - 12} \right) = y + 12}\end{array}} \right.\]
Cộng vế theo vế từng phương trình ta có \[6x - 48 = 2y \Leftrightarrow 6x - 2y = 48 \Leftrightarrow 3x - y = 24\].
Hỏi 3 lần số tiền của Tim nhiều hơn số tiền của Tom là 24 đô.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK