Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a , hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của AB. Mặt bên

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a , hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của AB. Mặt bên (\(ACC'A'\)) tạo với mặt phẳng đáy một góc \[45^\circ \] . Tính thể tích của khối lăng trụ ABC.A'B'C'.

A. \(\frac{{{a^3}\sqrt 3 }}{3}.\)

B. \(\frac{{3{a^2}}}{{16}}.\)

C. \(\frac{{2{a^3}\sqrt 3 }}{3}.\)

D. \(\frac{{{a^3}}}{{16}}.\)

* Đáp án

B

* Hướng dẫn giải

Phương pháp giải: - Xác định góc giữa hai mặt phẳng \[\left( {ACC'A'} \right)\]\[\left( {ABC} \right)\] Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Tính chiều cao và diện tích đáy của lăng trụ.

- Sử dụng công thức tính thể tích lăng trụ: \[{V_{lt}} = \,{S_{day}}.\,h\] trong đó \[{S_{day}}\]\[h\] lần lượt là diện tích đáy và chiều cao của lăng trụ

Giải chi tiết:

Gọi \[D,E\]lần lượt là trung điểm \[AB,AC\]

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a , hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) là trung điểm của AB. Mặt bên (ảnh 1)

Vì tam giác \[ABC\]đều cạnh \[a\] nên \[BE \bot AC\]  \[BE = \frac{{a\sqrt 3 }}{2},{S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\]

Gọi \[F\]là điểm trên cạnh \[AC\]sao cho \[F\]là trung điểm \[AE\]ta có: 

\[DF//BE\] (do \[DF\]là đường trung bình của tam giác \[ABE\]) mà \[BE \bot AC\]nên \[DF \bot AC\].

Ta có: \[\left\{ {\begin{array}{*{20}{c}}{AC \bot DF}\\{AC \bot A'D(A'D \bot (ABC))}\end{array} \Rightarrow AC \bot (DFA') \Rightarrow AC \bot A'F} \right.\]

Ta có: \[\left\{ {\begin{array}{*{20}{c}}{\left( {ACC'A'} \right) \cap \left( {ABC} \right) = AC}\\{\left( {ACC'A'} \right) \supset A'F \bot AC}\\{\left( {ABC} \right) \supset \,DF\, \bot \,AC}\end{array}} \right. \Rightarrow \angle \,\left( {\left( {ACC'A'} \right)\,;\,\left( {ABC} \right)} \right) = \,\angle \left( {A'F;DE} \right)\]

\[ \Rightarrow \angle DFA' = 45^\circ \, \Rightarrow \,\Delta DFA'\] vuông cân tại \[D\]

\[ \Rightarrow A'D = DF = \frac{1}{2}BE = \frac{1}{2}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{4}\]

\[ \Rightarrow {V_{ABC.A'B'C'}} = {S_{ABC}}.A'D = \frac{{{a^2}\sqrt 3 }}{4}.\frac{{a\sqrt 3 }}{4} = \frac{{3{a^3}}}{{16}}\]

Chọn B.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK