Cho phương trình lo{g7}({x^2} + 2x + 2) + 1 > log({x^2} + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3) ?

Câu hỏi :

Cho phương trình \[lo{g_7}({x^2} + 2x + 2) + 1 > log({x^2} + 6x + 5 + m)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3) ?

* Đáp án

* Hướng dẫn giải

Đáp án: 36

Phương pháp giải:

Giải chi tiết:

ĐK: \[{x^2} + 6x + 5 + m > 0\].

\[\begin{array}{l}lo{g_7}\left( {{x^2} + 2x + 2} \right) + 1 > lo{g_7}\left( {{x^2} + 6x + 5 + m} \right)\\ \Leftrightarrow lo{g_7}7\left( {{x^2} + 2x + 2} \right) > lo{g_7}\left( {{x^2} + 6x + 5 + m} \right)\\ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m\\ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0\\ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0\end{array}\]

Bất phương trình đã cho có nghiệm chứa khoảng \[\left( {1;3} \right)\]  bất phương trình đã cho xác định trên khoảng \[\left( {1;3} \right)\] và bất phương trình luôn đúng với mọi \[x \in \mathbb{R}\]hoặc bất phương trình có nghiệm thỏa mãn \[\left[ \begin{array}{l}3 \le {x_1} < {x_2}\\{x_1} < {x_2} \le 1\end{array} \right.\]  với \[{x_1},{x_2}\] là hai nghiệm của phương trình \[6{x^2} + 8x + 9 - m = 0\].

[Δ' <0{Δ'0[{x1+x2>6(x1-3)(x2-3)0{x1+x2<2(x1-1)(x2-1)0[42-6(9-m)<0{42-6(9-m)0[{-86>6(ktm){x1x2-3(x1+x2)+90{-86<2{x1x2-(x1+x2)+10[16-54+6m<0{16-54+6m09-m6+86+10[m<193{m1939-m+8+60[m<193{m193m23[m<193193m23m23

Hàm số đã cho xác định trên (1;3)x2+6x+5+m>0x(1;3)

[Δ' <0{Δ' 0[3x1<x2x1<x21[Δ' <0{Δ'0[{x1+x2>6(x1-3)(x2-3)0{x1+x2<2(x1-1)(x2-1)0[32-5-m<0{32-5-m0[{-6>6(ktm)x1x2-3(x1+x2)+90{-6<2x1x2-(x1+x2)+10[9-5-m<0{9-5-m05+m+6+10[m>4{m4m -12m-12

Kết hợp lại ta có: \[ - 12 \le m \le 23\], mà \[m \in Z\]

Vậy có \[\left( {23 + 12} \right):1 + 1 = 36\] giá trị của m thỏa mãn yêu cầu bài toán.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK