Cho hàm số f(x)có f'(x) = (x^3- 1)(x^2 - 3x + 2). Số điểm cực đại của hàm số đã cho là:

Câu hỏi :

Cho hàm số \[f(x)\]\[f'(x) = ({x^3} - 1)({x^2} - 3x + 2)\]. Số điểm cực đại của hàm số đã cho là:

* Đáp án

* Hướng dẫn giải

Đáp án: 0

Phương pháp giải: Số điểm cực trị của đồ thị hàm số \[y = f\left( x \right)\] là số nghiệm bội lẻ của phương trình \[f'\left( x \right) = 0\].

Điểm \[x = {x_0}\] là điểm cực đại của hàm số \[y = f\left( x \right) \Leftrightarrow \] tại điểm \[x = {x_0}\] thì hàm số có \[y\prime \]  đổi dấu từ dương sang âm.

Giải chi tiết:

Ta có: \[f'\left( x \right) = 0\]

\[\begin{array}{l} \Leftrightarrow \left( {{x^3} - 1} \right)\left( {{x^2} - 3x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^3} - 1 = 0\\{x^2} - 3x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^3} = 1\\\left( {x - 1} \right)\left( {x - 2} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x - 1 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 1\\x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\end{array}\]

Ta thấy \[x = 1\] là nghiệm bội 4 của phương trình \[f\prime \left( x \right) = 0 \Rightarrow x = 1\] không là điểm cực trị của hàm số.

Ta có bảng xét dấu:

Cho hàm số f(x)có f'(x) = (x^3- 1)(x^2 - 3x + 2). Số điểm cực đại của hàm số đã cho là: (ảnh 1)

Ta thấy qua điểm \[x = 2\] thì \[f\prime \left( x \right)\;\]đổi dấu từ âm sang dương nên \[x = 2\] là điểm cực tiểu của hàm số.

 Hàm số không có điểm cực đại.

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK