Cho hình vuông \(ABCD\) có cạnh bằng \(a\). Qua trung điểm \(I\) của cạnh \(AB\) dựng đường thẳng \(\left( d \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Trên \(\left( d \right)\) lấy điểm \(S\) sao cho \(SI = \frac{{a\sqrt 3 }}{2}\). Tính khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAD} \right)\).
Đáp án: \(\frac{{a\sqrt 3 }}{2}\)
Phương pháp giải:
- Tính \({V_{S.ACD}} = \frac{1}{3}SI.{S_{\Delta ACD}}\)
- Chứng minh \(\Delta SAD\) vuông, tính \({S_{\Delta SAD}}\).
- Sử dụng công thức \(d\left( {C;\left( {SAD} \right)} \right) = \frac{{3{V_{S.ACD}}}}{{{S_{\Delta SAD}}}}\)
Giải chi tiết:
Ta có: \({S_{\Delta ACD}} = \frac{1}{2}{S_{ABCD}} = \frac{{{a^2}}}{2}\).
\( \Rightarrow {V_{S.ACD}} = \frac{1}{3}SI.{S_{\Delta ACD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{{12}}\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AD \bot AB}\\{AD \bot SI}\end{array}} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot SA\)\( \Rightarrow \Delta SAD\)vuông tại \(A\).
Xét tam giác vuông \(SAI\):
\( \Rightarrow {S_{\Delta SAD}} = \frac{1}{2}SA.AD = \frac{1}{2}.a.a = \frac{{{a^2}}}{2}\)
Vậy \(d\left( {C;\left( {SAD} \right)} \right) = \frac{{3{V_{S.ACD}}}}{{{S_{\Delta SAD}}}} = \frac{{3.\frac{{{a^3}\sqrt 3 }}{{12}}}}{{\frac{{{a^2}}}{2}}} = \frac{{a\sqrt 3 }}{2}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK