Gọi ( H ) là hình phẳng giới hạn bởi các đồ thị y = x^2-2x, y=0

Câu hỏi :

Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi các đồ thị \(y = {x^2} - 2x,y = 0\) trong mặt phẳng \(Oxy\). Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng

A. \(\int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \)

B. \(\pi \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} \)

C. \(\pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \)

D. \(\int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \)

* Đáp án

* Hướng dẫn giải

Phương pháp giải:

Cho hai hàm số \(y = f\left( x \right)\)\(y = g\left( x \right)\) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số \(y = f\left( x \right)\), \(y = g\left( x \right)\) và hai đường thẳng \(x = a;y = b\) khi quay quanh trục Ox là:

\(V = \pi \int_a^b {\left| {{f^2}(x) - {g^2}(x)} \right|dx} \).

Giải chi tiết:

Giải phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2}\end{array}} \right.\)

Quay hình \(\left( H \right)\) quanh trục hoành ta được một khối tròn xoay có thể tích bằng \(V = \pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} \).

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK