Xét các số phức z thỏa mãn (z - 2 + 5i)/(z + z (có gạch ngang trên đầu)i + ) là số thực. Tập hợp

Câu hỏi :

Xét các số phức z thỏa mãn z2+5iz+z¯i+2  là số thực. Tập hợp các điểm biểu diễn của số phức 2z là một parabol (P). Tính diện tích hình phẳng giới hạn bởi (P)và trục hoành.

* Đáp án

* Hướng dẫn giải

Giả sử z=x+yix,y 

Khi đó z2+6iz+z¯i+2=x2+y+6i2+2xi=x2+y+6i1xi21+x2 

=x2+xy+6+xx2+y+6i21+x2 

Ta có z2+6iz+z¯i+2 là số thực xx2+y+6=0 

y=x22x62y=12.4x22.2x6 

Số phức 2z có điểm biểu diễn M2x;2yQuỹ tích các điểm M là parabol có phương trình P:y=12x22x6 

Xét phương trình hoành độ giao điểm của (P) và trục hoành, ta có

12x22x6=0x=6x=2

Vậy diện tích hình phẳng giới hạn bởi (P) và trục hoành là

S=2612x22x6dx=2612x22x6dx=1283

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK