Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox. Đặt \(\widehat{POA}=\alpha\) và \(OM=R, \left ( 0\leq \alpha \leq \frac{\pi }{3}, R>0 \right )\).
Gọi V là khối tròn xoay thu được khi quay tam giác đó xung quanh Ox (H.63).
a) Tính thể tích của V theo α và R.
b) Tìm \(\small \alpha\) sao cho thể tích V là lớn nhất.
Câu a:
Ta có: \(OP=R.cos\alpha ; PM=R.sin\alpha\)
⇒ Diện tích đáy B của khối tròn xoay V là: \(B= \pi .PM^2=\pi .R^2.sin^2\alpha .\)
Theo công thức (4) ta có thể tích của khối tròn xoay V là:
\(V=\frac{1}{3}B.OP=\frac{1}{3}.R.cos\alpha .\pi .R^2.sin^2\alpha\)
\(=\frac{1}{3}\pi .R^3.cos\alpha .sin^2\alpha =\frac{1}{3}\pi .R^3(cos\alpha -cos^3\alpha )\)
Với \(=\left ( 0\leq \alpha \leq \frac{\pi }{3} \right )\)
Câu b:
Ta có V lớn nhất \(\Leftrightarrow cos\alpha -cos^3\alpha\) lớn nhất.
Xét hàm số \(f(t)=t-t^3(t=cos\alpha )\). Khi \(\alpha \in \left ( 0;\frac{\pi }{3} \right )\) thì \(t \in \left ( \frac{1}{2};1\right )\)
Ta có: \(f'(t) = 1 - 3{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}
t = \frac{1}{{\sqrt 3 }}\\
t = \frac{1}{2}
\end{array} \right.\)
Ta có bảng biến thiên:
⇒ f(t) lớn nhất bằng \(\frac{2}{3\sqrt{3}}\) khi \(t=\frac{1}{\sqrt{3}}\)
Hay \(cos \alpha -cos^3\alpha\) lớn nhất: \(\frac{2}{3\sqrt{3}}\) đạt được khi \(cos\alpha =\frac{1}{\sqrt{3}}\)
Vậy \(V_{max}=\frac{2\pi \sqrt{3}}{27}R^3\) khi \(cos\alpha =\frac{1}{\sqrt{3}}\).
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK