Cho a, b là hai số dương. Gọi K là hình phẳng nằm trong góc phần tư thứ hai được giới hạn bởi parabol y = ax2 và đường thẳng y = −bx. Biết rằng thể tích khối tròn xoay tạo được khi quay K xung quanh trục hoành là một số không phụ thuộc vào giá trị của a và b. Khi đó a và b thỏa mãn điều kiện sau:
(A) \({b^4} = 2{a^5}\)
(B) \({b^3} = 2{a^5}\)
(C) \({b^5} = 2{a^3}\)
(D) \({b^4} = 2{a^2}\)
\(a{x^2} = - bx \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
{x = 0}\\
{x = - \frac{b}{a}}
\end{array}} \right.\)
\(\begin{array}{l}
V = \pi \int \limits_{ - \frac{b}{a}}^0 {\left( { - bx} \right)^2}dx - \pi \int \limits_{ - \frac{b}{a}}^0 {\left( {a{x^2}} \right)^2}dx\\
= \pi \int\limits_{ - \frac{b}{a}}^0 {\left( {{b^2}{x^2} - {a^2}{x^4}} \right)dx} \\
= \pi \left. {\left( {\frac{{{b^2}{x^3}}}{3} - \frac{{{a^2}{x^5}}}{5}} \right)} \right|_{ - \frac{b}{a}}^0\\
= - \pi \left( { - \frac{{{b^5}}}{{3{a^3}}} + \frac{{{b^5}}}{{5{a^3}}}} \right) = \frac{{2\pi {b^5}}}{{15{a^3}}}
\end{array}\)
Vì \(\frac{{{b^5}}}{{{a^3}}}\) là hằng số nên ta phải chọn (C).
Khi đó \(V = \frac{{4\pi }}{{15}}.\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK