Bài tập 2 trang 100-101 SGK Giải tích 12

Lý thuyết Bài tập
Câu hỏi:

Bài tập 2 trang 100-101 SGK Giải tích 12

Tìm nguyên hàm của các hàm số sau?

a) \(\small f(x)=\frac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\).                            

b)  \(f(x)=\frac{2^{x}-1}{e^{x}}\).

c)  \(f(x)=\frac{1}{sin^{2}x.cos^{2}x}\).                         

d) \(f(x) = sin5x.cos3x\).

e) \(f(x) = tan^2x\).

g) \(f(x) = e^{3-2x}\).

h) \(f(x)=\frac{1}{(1+x)(1-2x)}\).

Hướng dẫn:

Biến đổi các biểu thức đã cho về tổng các biểu thức mà ta có thể suy ra được ngay nguyên hàm theo công thức tìm nguyên hàm của các hàm số cơ bản đã được giới thiệu trong bài học.

ÁP dụng các tính chất:

  •  \(\int fk(x)dx=k\int f(x)dx\) (với k là hằng số khác 0).
  • \(\int {\left( {f(x) \pm g(x)} \right)dx} = \int {f(x)dx} \pm \int {g(x)dx}.\)

Lời giải:

Câu a:

\(f(x) = \frac{{x + \sqrt x + 1}}{{\sqrt[3]{x}}} = \frac{{x + {x^{\frac{1}{2}}} + 1}}{{{x^{\frac{1}{3}}}}} = {x^{\frac{2}{3}}} + {x^{\frac{1}{6}}} + {x^{\frac{1}{3}}}\)

\(\Rightarrow \int {f(x)dx} = \frac{3}{5}{x^{\frac{5}{3}}} + \frac{6}{7}{x^{\frac{7}{6}}} + {\frac{3}{2}^{\frac{2}{3}}} + C.\)

Câu b: 

\(f(x) = \frac{{{2^x} - 1}}{{{e^x}}} = {\left( {\frac{2}{e}} \right)^x} - {e^{ - x}}\)

\(\Rightarrow \int {f(x)dx}  = \int {\left( {\frac{{{{\left( {\frac{2}{e}} \right)}^x}}}{{\ln \frac{2}{e}}} + {e^{ - x}}} \right)} dx{\rm{}} = \frac{{{2^x}}}{{{e^x}(\ln 2 - 1)}} + \frac{1}{{{e^x}}} = \frac{{{2^x} + \ln 2 - 1}}{{{e^x}(\ln 2 - 1)}}.\)

Câu c:

\(\begin{array}{l} f(x) = \frac{1}{{{{\sin }^2}x.{{\cos }^2}x}} = \frac{{{{\sin }^2} + {{\cos }^2}x}}{{{{\sin }^2}x.co{s^2}x}} = \frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}\\ \Rightarrow \int {f(x)dx} = \int {\left( {\frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}} \right)dx = \tan x - \cot x + C} \end{array}\)

Câu d:

\(f(x) = \sin 5x.\cos 3xdx = \frac{1}{2}(\sin 8x + \sin 2x)\)

Vậy: 

\(\begin{array}{l} \int {f(x)dx} = \frac{1}{2}\int {\left( {\sin 8x + \sin 2x} \right)dx} = - \frac{1}{2}\left( {\frac{1}{8}\cos 8x + \frac{1}{2}\cos 2x} \right) + C\\ = - \frac{1}{4}\left( {\frac{1}{4}\cos 8x + \cos 2x} \right) + C \end{array}\)

Câu e:

\(\begin{array}{l} f(x) = {\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\\ \Rightarrow \int {f(x)dx} = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \tan x - x + C. \end{array}\)

Câu g:

\(\int {f(x)dx} = \int {{e^{3 - 2x}}dx} = - \frac{1}{2}{e^{3 - 2x}} + C.\)

Câu h:

\(\begin{array}{l} f(x) = \frac{1}{{(1 + x)(1 - 2x)}} = \frac{a}{{1 + x}} + \frac{b}{{1 - 2x}}\\ = \frac{{a(1 - 2x) + b(1 + x)}}{{(1 + x)(1 - 2x)}} = \frac{{(b - 2a)x + a + b}}{{(1 + x)(1 - 2x)}}. \end{array}\)

Đồng nhất hệ số ta có:\(\left\{ \begin{array}{l} b - 2a = 0\\ a + b = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{3}\\ b = \frac{2}{3} \end{array} \right.\)

Vậy: 

\(\begin{array}{l} \int {f(x)dx} = \frac{1}{3}\int {\frac{1}{{1 + x}}dx} + \frac{2}{3}\int {\frac{1}{{1 - 2x}}dx} \\ = \frac{1}{3}\ln \left| {1 + x} \right| - \frac{1}{3}\ln \left| {2x - 1} \right| + C = \frac{1}{3}\ln \left| {\frac{{x + 1}}{{2x - 1}}} \right| + C. \end{array}\)

 

-- Mod Toán 12

Video hướng dẫn giải bài 2 SGK

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK