Tìm nguyên hàm của các hàm số sau?
a) \(\small f(x)=\frac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\).
b) \(f(x)=\frac{2^{x}-1}{e^{x}}\).
c) \(f(x)=\frac{1}{sin^{2}x.cos^{2}x}\).
d) \(f(x) = sin5x.cos3x\).
e) \(f(x) = tan^2x\).
g) \(f(x) = e^{3-2x}\).
h) \(f(x)=\frac{1}{(1+x)(1-2x)}\).
Biến đổi các biểu thức đã cho về tổng các biểu thức mà ta có thể suy ra được ngay nguyên hàm theo công thức tìm nguyên hàm của các hàm số cơ bản đã được giới thiệu trong bài học.
ÁP dụng các tính chất:
Câu a:
\(f(x) = \frac{{x + \sqrt x + 1}}{{\sqrt[3]{x}}} = \frac{{x + {x^{\frac{1}{2}}} + 1}}{{{x^{\frac{1}{3}}}}} = {x^{\frac{2}{3}}} + {x^{\frac{1}{6}}} + {x^{\frac{1}{3}}}\)
\(\Rightarrow \int {f(x)dx} = \frac{3}{5}{x^{\frac{5}{3}}} + \frac{6}{7}{x^{\frac{7}{6}}} + {\frac{3}{2}^{\frac{2}{3}}} + C.\)
Câu b:
\(f(x) = \frac{{{2^x} - 1}}{{{e^x}}} = {\left( {\frac{2}{e}} \right)^x} - {e^{ - x}}\)
\(\Rightarrow \int {f(x)dx} = \int {\left( {\frac{{{{\left( {\frac{2}{e}} \right)}^x}}}{{\ln \frac{2}{e}}} + {e^{ - x}}} \right)} dx{\rm{}} = \frac{{{2^x}}}{{{e^x}(\ln 2 - 1)}} + \frac{1}{{{e^x}}} = \frac{{{2^x} + \ln 2 - 1}}{{{e^x}(\ln 2 - 1)}}.\)
Câu c:
\(\begin{array}{l} f(x) = \frac{1}{{{{\sin }^2}x.{{\cos }^2}x}} = \frac{{{{\sin }^2} + {{\cos }^2}x}}{{{{\sin }^2}x.co{s^2}x}} = \frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}\\ \Rightarrow \int {f(x)dx} = \int {\left( {\frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}} \right)dx = \tan x - \cot x + C} \end{array}\)
Câu d:
\(f(x) = \sin 5x.\cos 3xdx = \frac{1}{2}(\sin 8x + \sin 2x)\)
Vậy:
\(\begin{array}{l} \int {f(x)dx} = \frac{1}{2}\int {\left( {\sin 8x + \sin 2x} \right)dx} = - \frac{1}{2}\left( {\frac{1}{8}\cos 8x + \frac{1}{2}\cos 2x} \right) + C\\ = - \frac{1}{4}\left( {\frac{1}{4}\cos 8x + \cos 2x} \right) + C \end{array}\)
Câu e:
\(\begin{array}{l} f(x) = {\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\\ \Rightarrow \int {f(x)dx} = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \tan x - x + C. \end{array}\)
Câu g:
\(\int {f(x)dx} = \int {{e^{3 - 2x}}dx} = - \frac{1}{2}{e^{3 - 2x}} + C.\)
Câu h:
\(\begin{array}{l} f(x) = \frac{1}{{(1 + x)(1 - 2x)}} = \frac{a}{{1 + x}} + \frac{b}{{1 - 2x}}\\ = \frac{{a(1 - 2x) + b(1 + x)}}{{(1 + x)(1 - 2x)}} = \frac{{(b - 2a)x + a + b}}{{(1 + x)(1 - 2x)}}. \end{array}\)
Đồng nhất hệ số ta có:\(\left\{ \begin{array}{l} b - 2a = 0\\ a + b = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{1}{3}\\ b = \frac{2}{3} \end{array} \right.\)
Vậy:
\(\begin{array}{l} \int {f(x)dx} = \frac{1}{3}\int {\frac{1}{{1 + x}}dx} + \frac{2}{3}\int {\frac{1}{{1 - 2x}}dx} \\ = \frac{1}{3}\ln \left| {1 + x} \right| - \frac{1}{3}\ln \left| {2x - 1} \right| + C = \frac{1}{3}\ln \left| {\frac{{x + 1}}{{2x - 1}}} \right| + C. \end{array}\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK