Tính các tích phân sau :
\(\begin{array}{l}
a)\int \limits_0^{\frac{\pi }{4}} x\cos 2xdx\\
b)\int \limits_0^1 \frac{{\ln \left( {2 - x} \right)}}{{2 - x}}dx\\
c)\int \limits_1^{\frac{\pi }{2}} {x^2}\cos xdx.\\
d)\int \limits_0^{\frac{\pi }{4}} x\cos 2xdx\\
e)\int \limits_1^e {x^2}\ln xdx
\end{array}\)
a) Đặt \(\left\{ \begin{array}{l}
u = x\\
dv = \cos 2xdx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = \frac{1}{2}\sin 2x
\end{array} \right.\)
Do đó:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
\int\limits_0^{\frac{\pi }{4}} x \cos 2xdx\\
= \left. {\frac{1}{2}x\sin 2x} \right|_0^{\frac{\pi }{4}} - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\sin 2x} dx
\end{array}\\
\begin{array}{l}
= \frac{\pi }{8} + \left. {\frac{1}{4}\cos 2x} \right|_0^{\frac{\pi }{4}}\\
= \frac{\pi }{8} + \frac{1}{4}\left( { - 1} \right) = \frac{\pi }{8} - \frac{1}{4}
\end{array}
\end{array}\)
b) Đặt \(u = \ln (2 - x) \Rightarrow du = \frac{{ - 1}}{{2 - x}}dx\)
\(\begin{array}{l}
\int\limits_0^1 {\frac{{\ln \left( {2 - x} \right)}}{{2 - x}}} dx = - \int\limits_{\ln 2}^0 u du\\
= \int\limits_0^{\ln 2} u du = \left. {\frac{{{u^2}}}{2}} \right|_0^{\ln 2} = \frac{1}{2}{\left( {\ln 2} \right)^2}
\end{array}\)
c) Đặt \(\left\{ \begin{array}{l}
u = {x^2}\\
dv = \cos xdx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = 2xdx\\
v = \sin x
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
I = \int\limits_0^{\frac{\pi }{2}} {{x^2}} \cos 2xdx\\
= \left. {{x^2}{\rm{sinx}}} \right|_0^{\frac{\pi }{2}} - 2\int\limits_0^{\frac{\pi }{2}} x sinxdx\\
= \frac{{{\pi ^2}}}{4} - 2{I_1}
\end{array}\)
Với \({I_1} = \int \limits_0^{\frac{\pi }{2}} x\sin xdx\)
Đặt \(\left\{ {\begin{array}{*{20}{l}}
{u = x}\\
{dv = \sin xdx}
\end{array}} \right. \Rightarrow \left\{ \begin{array}{l}
du = dx\\
v = - \cos x
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
{I_1} = \left. { - x\cos x} \right|_0^{\frac{\pi }{2}} + \int\limits_0^{\frac{\pi }{2}} {\cos } xdx\\
= \left. {\sin x} \right|_0^{\frac{\pi }{2}} = 1
\end{array}\)
Vậy \(I = \frac{{{\pi ^2}}}{4} - 2\)
d) Đặt
\(\begin{array}{l}
u = \sqrt {{x^3} + 1} \Rightarrow {u^2} = {x^3} + 1\\
\Rightarrow 2udu = 3{x^2}dx\\
\Rightarrow {x^2}dx = \frac{2}{3}udu
\end{array}\)
\(\begin{array}{l}
\int\limits_0^1 {{x^2}} \sqrt {{x^3} + 1} dx = \frac{2}{3}\int\limits_1^{\sqrt 2 } {{u^2}} du\\
= \left. {\frac{{2{u^3}}}{9}} \right|_1^{\sqrt 2 } = \frac{2}{9}\left( {2\sqrt 2 0 - 1} \right)
\end{array}\)
e) Đặt \(\left\{ \begin{array}{l}
u = \ln x\\
dv = {x^2}dx
\end{array} \right. \)
\(\Rightarrow \left\{ \begin{array}{l}
du = \frac{{dx}}{2}\\
v = \frac{{{x^3}}}{3}
\end{array} \right.\)
Do đó:
\(\begin{array}{l}
\int\limits_1^e {{x^2}} \ln xdx\\
= \left. {\frac{{{x^3}}}{3}\ln x} \right|_1^e - \frac{1}{3}\int\limits_0^e {{x^2}} dx\\
= \left. {\frac{{{e^3}}}{3} - \frac{1}{9}{x^3}} \right|_1^e = \frac{{2{e^3} + 1}}{9}
\end{array}\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK