Sử dụng phương pháp biến số, hãy tính:
a) \(\small \int (1-x)^9dx\) (đặt u =1-x)
b) \(\small \int x(1+x^2)^\frac{3}{2} dx\) (đặt u = 1 + x2).
c) \(\small \int cos^3x.sinxdx\) (đặt t = cosx).
d) \(\int \frac{dx}{e^{x}+e^{-x}+2}\) đặt u= ex +1).
Đề bài yêu cầu tính cầu tính nguyên hàm của hàm số bằng phương pháp đổi biến số và cả 4 câu a, b, c, d đều cho sẵn cách đặt biến số mới.
Dưới đây là lời giải chi tiết bài 3, sẽ giúp các em từng bước làm quen với cách tính nguyên hàm bằng phương pháp đổi biến số:
Câu a:
Đặt: \(u = 1 - x \Rightarrow du = - dx \Rightarrow dx = - du\)
\(\int {{{(1 - x)}^9}dx} = - \int {{u^9}du} = - \frac{{{u^{10}}}}{{10}} + C = - \frac{1}{{10}}{(1 - x)^{10}} + C.\)
Câu b:
Đặt: \(u = 1 + {x^2} \Rightarrow du = 2xdx \Rightarrow xdx = \frac{1}{2}du\)
\(\int {x{{(1 + {x^2})}^{\frac{3}{2}}}dx} = \frac{1}{2}\int {{u^{\frac{3}{2}}}du} = \frac{1}{5}{u^{\frac{5}{2}}} + C = \frac{1}{5}{(1 + {x^2})^{\frac{5}{2}}} + C.\)
Câu c:
Đặt: \(t = \cos x \Rightarrow dt = - \sin xdx \Rightarrow \sin xdx = - dt\)
\(\int {{{\cos }^3}x.\sin xdx} = - \int {{t^3}dt} = - \frac{{{t^4}}}{4} + C = - \frac{1}{4}{\cos ^4}x + C.\)
Câu d:
Ta có: \(\int {\frac{{dx}}{{{e^x} + {e^{ - x}} + 2}} = \int {\frac{{{e^x}dx}}{{{e^{2x}} + 2.{e^x} + 1}}} = \int {\frac{{{e^x}dx}}{{{{({e^x} + 1)}^2}}}} }\)
Đặt \(t = {e^x} + 1 \Rightarrow dt = {e^x}dx\)
Suy ra: \(I = \int {\frac{{dt}}{{{t^2}}} = - \frac{1}{t} + C = - \frac{1}{{{e^x} + 1}} + C.}\)
-- Mod Toán 12
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK