Bài tập 5 trang 70 SGK Hình học 10 NC

Lý thuyết Bài tập
Câu hỏi:

Bài tập 5 trang 70 SGK Hình học 10 NC

Cho hình vuông ABCD cạnh a. Gọi N là trung điểm của CD, M là điểm trên AC sao cho AM = \(\frac{1}{4}\)AC.

a)Tính các cạnh của tam giác BMN.

b) Có nhận xét gì về tam giác BMN ? Tính diện tích tam giác đó.

c) Gọi I là giao điểm của  BN và AC. Tính CI.

d) Tính bán kính đường tròn ngoại tiếp tam giác BDN.

a) Gọi O là tâm của hình bình hành ABCD thì M là trung điểm AO.

\(\begin{array}{l}
B{N^2} = B{C^2} + N{C^2}\\
 = {a^2} + \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{4} \Rightarrow BN = \frac{{a\sqrt 5 }}{2}\\
B{M^2} = B{O^2} + O{M^2}\\
 = {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} + {\left( {\frac{{a\sqrt 2 }}{4}} \right)^2} = \frac{{5{a^2}}}{8}\\
 \Rightarrow BM = \frac{{a\sqrt {10} }}{4}
\end{array}\)

Kẻ MP // AD ta có

\(\begin{array}{*{20}{l}}
\begin{array}{l}
M{N^2} = M{P^2} + P{N^2}\\
 = {\left( {\frac{{3a}}{4}} \right)^2} + {\left( {\frac{a}{4}} \right)^2} = \frac{{10{a^2}}}{{16}}
\end{array}\\
{ \Rightarrow MN = \frac{{a\sqrt {10} }}{4}}
\end{array}\)

b) Ta có

MB = MN, BN2 = MB2+MN2 nên tam giác BMN vuông cân tại M.

Diện tích tam giác BMN là

\({S_{BMN}} = \frac{1}{2}M{N^2} = \frac{1}{2}.\frac{{10{a^2}}}{{16}} = \frac{{5{a^2}}}{{16}}\)

c) Ta có I là trọng tâm tam giác BCD nên \(IC = \frac{2}{3}IO = \frac{2}{3}.a.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{3}\) 

d) Gọi R là bán kính đường tròn ngoại tiếp tam giác BDN.

Áp dụng định lí sin ta có:

\(\begin{array}{l}
\frac{{BN}}{{\sin BDN}} = 2R\\
 \Rightarrow R = \frac{{BN}}{{2\sin {{45}^0}}}\\
 = \frac{{a\sqrt 5 }}{2}.\frac{1}{{\sqrt 2 }} = \frac{{a\sqrt {10} }}{4}
\end{array}\)

 

-- Mod Toán 10

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK