Gọi H là trực tâm của tam giác không vuông ABC. Chứng minh rằng bán kính các đường tròn ngoại tiếp các tam giác ABC, HBC, HCA, HAB bằng nhau.
Trường hợp 1: Tam giác ABC có ba góc nhọn.
Gọi R, R1 lần lượt là bán kính đường tròn ngoại tiếp tam giác ABC, HBC.
Áp dụng định lí sin ta có
\(\frac{{BC}}{{\sin A}} = 2R;\frac{{BC}}{{\sin \widehat {BHC}}} = 2{R_1}\)
Mà \(\widehat {BHC} + \widehat A = \widehat {B'HC'} + \widehat A = {180^0}\)
(Vì 2 góc BHC và B′HC′ đối đỉnh)
⇒ sinA = sinBHC
Do đó 2R = 2R1 ⇒ R = R1.
Vậy bán kính đường tròn ngoại tiếp tam giác HBC bằng bán kính đường tròn ngoại tiếp tam giác ABC.
Tương tự bán kính đường tròn ngoại tiếp tam giác HCA, HAB bằng bán kính đường tròn ngoại tiếp tam giác ABC.
Trường hợp 2: Tam giác ABC có góc tù.
Ta có \(\frac{{BC}}{{\sin \widehat {BAC}}} = 2R;\frac{{BC}}{{\sin \widehat {BHC}}} = 2{R_1}\)
Mà \(\widehat {B'AC'} + \widehat {CHB} = {180^0}\sin \widehat {BAC} = \sin \widehat {B'AC'} = \sin \widehat {CHB}\)
(Vì BAC và B′AC′ đối đỉnh)
⇒ R = R1
Tương tự ta chứng minh được bán kính đường tròn ngoại tiếp tam giác HCA, HAB bằng bán kính đường tròn ngoại tiếp tam giác ABC.
-- Mod Toán 10
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK