Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh rằng AB2+BC2+CD2+DA2 = AC2+BD2+4MN2.
Áp dụng công thức tính trung tuyến, MN là trung tuyến của tam giác BMD, ta có:
\(\begin{array}{l}
M{N^2} = \frac{{B{M^2} + D{M^2}}}{2} - \frac{{B{D^2}}}{4}\\
\Leftrightarrow 4M{N^2} = 2\left( {B{M^2} + D{M^2}} \right) - B{D^2}\left( 1 \right)
\end{array}\)
Tương tự, BM, DM lần lượt là trung tuyến của tam giác ABC, ADC nên:
\(\begin{array}{l}
4B{M^2} = 2\left( {A{B^2} + B{C^2}} \right) - A{C^2}\,\,\,\left( 2 \right)\\
4D{M^2} = 2\left( {D{A^2} + C{D^2}} \right) - A{C^2}\,\,\left( 3 \right)
\end{array}\)
Từ (2), (3) suy ra:
\(\begin{array}{l}
2\left( {B{M^2} + D{M^2}} \right)\\
= A{B^2} + B{C^2} + C{D^2} + D{A^2} - A{C^2}{\mkern 1mu} {\mkern 1mu} \left( 4 \right)
\end{array}\)
Thay (4) vào (1), ta có
4MN2 = AB2+BC2+CD2+DA2−AC2−BD2
⇒ AB2+BC2+CD2+DA2 = AC2+BD2+4MN2
-- Mod Toán 10
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK