Hình dưới đây cho biết góc A + góc B + góc C =360 độ. Chứng minh rằng Ax // Cy

Câu hỏi :

Hình dưới đây cho biết ∠A +∠B +∠C =360o. Chứng minh rằng Ax // Cy

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ Bz // Ax và Cy’ là tia đối của tia Cy

Ta có: ∠A +∠(B2 ) =180o

(2 góc trong cùng phía) (1)

Theo giả thiết ta có: ∠A +∠B + ∠C =360o (gt)

Hay ∠A +∠(B2 ) +∠(BCy) =360o (2)

Từ (1)và (2)suy ra :

∠(B1) + ∠BCy = 180o (3)

Lại có: ∠(C1 ) + ∠BCy =180o (hai góc kề bù) (4)

Từ (3) và (4) suy ra: ∠(B1 ) =∠(C1 )

Suy ra: Cy’ // Bz (vì có cặp góc so le trong bằng nhau)

Hay Cy // Bz mà Bz // Ax suy ra : Ax // Cy

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sách bài tập Toán 7 Tập 1 !!

Số câu hỏi: 795

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK