A. \(\frac{{ - 1}}{4} < m < 0\).
B. \(5 \le m \le \frac{{21}}{4}.\)
C. \(5 < m < \frac{{21}}{4}.\)
D. \(\frac{{ - 1}}{4} \le m \le 2\).
C
\({\log _3}(1 - {x^2}) + {\log _{\frac{1}{3}}}(x + m - 4) = 0 \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} > 0\\{\log _3}(1 - {x^2}) = {\log _3}(x + m - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \left( { - 1;1} \right)\\1 - {x^2} = x + m - 4\end{array} \right.\)
Yêu cầu bài toán\( \Leftrightarrow f\left( x \right) = {x^2} + x + m - 5 = 0\) có 2 nghiệm phân biệt \( \in \left( { - 1;1} \right)\)
Cách 1: Dùng định lí về dấu tam thức bậc hai.
Để thỏa yêu cầu bài toán ta phải có phương trình \(f\left( x \right) = 0\) có hai nghiệm thỏa: \( - 1 < {x_1} < {x_2} < 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}a.f\left( { - 1} \right) > 0\\a.f\left( 1 \right) > 0\\\Delta > 0\\ - 1 < \frac{S}{2} < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 5 > 0\\m - 3 > 0\\21 - 4m > 0\end{array} \right. \Leftrightarrow 5 < m < \frac{{21}}{4}\).
Cách 2: Với điều kiện có nghiệm, tìm các nghiệm của phương trình \(f\left( x \right) = 0\)rồi so sánh trực tiếp các nghiệm với \(1\) và \( - 1\) .
Cách 3: Dùng đồ thị
Đường thẳng \(y = - m\) cắt đồ thị hàm số \(y = {x^2} + x - 5\) tại hai điểm phân biệt trong khoảng \(\left( { - 1;1} \right)\) khi và chỉ khi đường thẳng \(y = - m\) cắt đồ thị hàm số \(y = {x^2} + x - 5\)tại hai điểm phân biệt có hoành độ \( \in \left( { - 1;1} \right)\).
Cách 4: Dùng đạo hàm
Xét hàm số \(f\left( x \right) = {x^2} + x - 5 \Rightarrow f'\left( x \right) = 2x + 1 = 0 \Rightarrow x = - \frac{1}{2}\)
Có \(f\left( { - \frac{1}{2}} \right) = - \frac{{21}}{4};f\left( 1 \right) = - 3;f\left( { - 1} \right) = - 5\)
Ta có bảng biến thiên
Dựa vào bảng biến thiên, để có hai nghiệm phân biệt trong khoảng \(\left( { - 1;1} \right)\) khi \( - \frac{{21}}{4} < - m < - 5 \Rightarrow \frac{{21}}{4} > m > 5\).
Cách 5: Dùng MTCT
Sau khi đưa về phương trình \({x^2} + x + m - 5 = 0\), ta nhập phương trình vào máy tính.
* Giải khi \(m = - 0,2\): không thỏa\( \Rightarrow \)loại A, D.
* Giải khi \(m = 5\): không thỏa \( \Rightarrow \)loại B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK