Đề thi THPT QG - 2021 - mã 101Cho hàm số

Câu hỏi :

Đề thi THPT QG - 2021 - mã 101

A.2ln3.

B.ln3.

C.ln18.

D.2ln2.

* Đáp án

* Hướng dẫn giải

* Xét phương trình hoành độ giao điểm:

\[\frac{{f\left( x \right)}}{{g\left( x \right) + 6}} = 1 \Leftrightarrow f\left( x \right) = g\left( x \right) + 6 \Leftrightarrow f\left( x \right) - g\left( x \right) - 6 = 0\]

(Chúng ta không cần lo điều kiện\[g\left( x \right) + 6 \ne 0\]  bởi lẽ đồ thị hàm số \[y = \frac{{f\left( x \right)}}{{g\left( x \right) + 6}}\] khi tương giao với đường thẳng\[y = 1\] phải tạo nên một miền kín, và khi số nghiệm của phương trình\[f\left( x \right) = g\left( x \right) + 6\] nhiều hơn 2 thì ta mới phải chú ý xem xét lấy cận từ đâu đến đâu, và liệu rằng có phải từ\[{x_{\min }} \to {x_{\max }}\] chẳng may đồ thị tương giao bị gián đoạn trên đoạn\[\left[ {{x_{\min }};{x_{\max }}} \right]\] mà vẫn tạo miền kín. Trên thực tế, bài toán này phương trình\[f\left( x \right) = g\left( x \right) + 6\] chỉ có 2 nghiệm (vì là phương trình bậc hai), nên người giải toán không cần quan tâm đến việc gián đoạn hay không, vì việc tồn tại nghiệm hình và hàm số là thuộc phạm trù người ra đề).

Mà\[g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right) \Rightarrow f\left( x \right) - g\left( x \right) = - f'\left( x \right) - f''\left( x \right)\]

⇒⇒ Phương trình hoành độ giao điểm trở thành:

\[ - f'\left( x \right) - f''\left( x \right) - 6 = 0 \Leftrightarrow f'\left( x \right) + f''\left( x \right) + 6 = 0\](1)

Mặt khác:\[g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + f'''\left( x \right)\] và\[f'''\left( x \right) = 6\]

\[ \Rightarrow g'\left( x \right) = f'\left( x \right) + f''\left( x \right) + 6\]

Từ phương trình (1)\[ \Leftrightarrow g'\left( x \right) = 0\]

Theo giả thiết g(x) có 2 điểm cực trị\[{x_1},\,\,{x_2}\] sao cho\(\left\{ {\begin{array}{*{20}{c}}{g({x_1}) = - 3}\\{g({x_2}) = 6}\end{array}} \right. \Rightarrow g'\left( x \right) = 0\) có 2 nghiệm\[{x_1},\,\,{x_2}\]

Vậy phương trình hoành độ giao điểm có 2 nghiệm\[{x_1},\,\,{x_2}\]

\[ \Rightarrow {S_{\left( H \right)}} = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {\frac{{f(x)}}{{g(x) + 6}} - 1} \right)dx} } \right|\]

\[\begin{array}{l} = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{f(x) - g(x) - 6}}{{g(x) + 6}}dx} } \right|\\ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{ - f\prime (x) - f\prime \prime (x) - 6}}{{g(x) + 6}}dx} } \right|\\ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{ - g\prime (x)}}{{g(x) + 6}}dx} } \right|\end{array}\]

\[ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{g\prime (x)}}{{g(x) + 6}}dx} } \right|\]

\[ = \left| {\int\limits_{{x_1}}^{{x_2}} {\frac{{d(g(x) + 6)}}{{g(x) + 6}}dx} } \right|\]

\[\begin{array}{l} = \mid ln|g(x) + 6||_{{x_1}}^{{x_2}}\mid \\ = |ln|g({x_2}) + 6| - ln|g({x_1}) + 6||\\ = |ln|6 + 6| - ln| - 3 + 6|| = ln12 - ln3 = 2ln2\end{array}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ứng dụng tích phân để tính diện tích !!

Số câu hỏi: 27

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK