Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH = 3cm; HB = 4cm. Tính AB,AC,AM và diện tích tam giác (ABC. )

Câu hỏi :

Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH = 3cm; HB = 4cm.  Tính AB,AC,AM và diện tích tam giác (ABC. )

A.  \( AB = 5cm,{\mkern 1mu} {\mkern 1mu} AC = \frac{{15}}{4}cm,{\mkern 1mu} {\mkern 1mu} AM = \frac{{25}}{8}cm,{S_{{\rm{\Delta }}ABC}} = \frac{{75}}{8}{\mkern 1mu} {\mkern 1mu} c{m^2}\)

B.  \( AB = 5cm,{\mkern 1mu} {\mkern 1mu} AC = 3cm,{\mkern 1mu} {\mkern 1mu} AM = 4cm,{S_{{\rm{\Delta }}ABC}} = \frac{{39}}{4}{\mkern 1mu} {\mkern 1mu} c{m^2}\)

C.  \( AB = \frac{{14}}{3}cm,{\mkern 1mu} {\mkern 1mu} AC = \frac{{14}}{4}cm,{\mkern 1mu} {\mkern 1mu} AM = 3cm,{S_{{\rm{\Delta }}ABC}} = \frac{{75}}{8}{\mkern 1mu} {\mkern 1mu} c{m^2}\)

D.  \( AB = \frac{{14}}{3}cm,{\mkern 1mu} {\mkern 1mu} AC = 3cm,{\mkern 1mu} {\mkern 1mu} AM = \frac{{27}}{8}cm,{S_{{\rm{\Delta }}ABC}} = 9{\mkern 1mu} {\mkern 1mu} c{m^2}\)

* Đáp án

A

* Hướng dẫn giải

+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

\( {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} A{B^2} = A{H^2} + H{B^2} = {3^2} + {4^2} = 25 \Rightarrow AB = 5{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {cm} \right)\)

+) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ABC với AH là đường cao ta có:

\( \frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} \Leftrightarrow \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{B^2}}} \Leftrightarrow \frac{1}{{A{C^2}}} = \frac{1}{{{3^2}}} - \frac{1}{{{5^2}}} = \frac{{16}}{{225}} \Rightarrow AC = \frac{{15}}{4}\left( {cm} \right)\)

+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có: 

\( B{C^2} = A{B^2} + A{C^2} = {5^2} + {\left( {\frac{{15}}{4}} \right)^2} = \frac{{625}}{{16}} \Rightarrow BC = \frac{{25}}{4}\left( {cm} \right)\)

+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có: \( AM = \frac{1}{2}BC = \frac{{25}}{8}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {cm} \right)\)

+) Diện tích tam giác ABC với AH là đường cao ta có:

\( {S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.3.\frac{{25}}{4} = \frac{{75}}{8}{\mkern 1mu} {\mkern 1mu} \left( {c{m^2}} \right)\)

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK