Trang chủ Lớp 7 Toán Lớp 7 SGK Cũ Bài 6. Tam giác cân Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 7

Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 7

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho tam giác ABC vuông cân tại A. Trên đáy BC lấy hai điểm M, N sao cho \( \Rightarrow AM = AN.\) \(BM = CN = AB.\)

a) Chứng minh \(\Delta AMN\) cân.

b) Tính \(\widehat {MAN}\)

Hướng dẫn giải

a) Ta có tam giác ABC vuông cân tại A (giả thiết)

\( \Rightarrow \widehat B = \widehat C = \dfrac{{{{180}^o} - \widehat A} }{ 2}\)\( \,= \dfrac{{{{180}^o} - {{90}^o}} }{ 2} = {45^o}\).

Lại có \(BM = AB\) (giả thiết), nên tam giác ABM cân

\( \Rightarrow \widehat {BAM} = \widehat {BMA} = \dfrac{{{{180}^o} - \widehat B} }{ 2}\)\(\, = \dfrac{{{{180}^o} - {{45}^o}} }{2} = 67,{5^o}\)

Tương tự \(\Delta CAN\) cân tại C và \(\widehat C = {45^o} \Rightarrow \widehat {CNA} = \widehat {CAN} = 67,{5^o}\)

\( \Rightarrow \widehat {AMB} = \widehat {CNA} = 67,{5^o}\).

Do đó \(\Delta AMN\) cân.

b) \(\Delta AMN\) cân tại A \( \Rightarrow \widehat {MAN} = {180^o} - \left( {\widehat {AMN} + \widehat {ANM}} \right)\)

\( = {180^o} - \left( {67,{5^o} + 67,{5^o}} \right) = {45^o}\).

Cách khác: chứng minh \(\Delta ABM = \Delta CAN\)(c.g.c) \( \Rightarrow AM = AN.\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK