Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( -20;20 \right)\) để với mọi cặp hai số \(\left

Câu hỏi :

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \(\left( -20;20 \right)\) để với mọi cặp hai số \(\left( x;y \right)\)có tổng lớn hơn 1 đều đồng thời thỏa mãn \({{e}^{3x+y}}-{{e}^{2x-2y+1}}=1-x-3y\) và \(\log _{3}^{2}\left( 2x+4y-1 \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)?

A. 15

B. 17

C. 14

D. 16

* Đáp án

B

* Hướng dẫn giải

Ta có \({{e}^{3x+y}}-{{e}^{2x-2y+1}}=1-x-3y\)\(\Leftrightarrow {{e}^{3x+y}}+3x+y={{e}^{2x-2y+1}}+2x-2y+1\,\,(*)\)

Xét hàm số \(f\left( t \right)={{e}^{t}}+t\) có \({f}'\left( t \right)={{e}^{t}}+1>0,\,\forall t\).Do đó:

\((*)\Leftrightarrow f\left( 3x+y \right)=f\left( 2x-2y+1 \right)\)\(\Leftrightarrow 3x+y=2x-2y+1\)\(\Leftrightarrow x+y=1-2y>1\).

Khi đó ta có

\(\log _{3}^{2}\left( 2x+4y-1 \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)

\(\Leftrightarrow \log _{3}^{2}\left( 1-2y \right)+2\left( m-1 \right){{\log }_{3}}\left( 1-2y \right)+{{m}^{2}}-9>0\)

Đặt \(u={{\log }_{3}}\left( 1-2y \right),\,\,u>0\), yêu cầu bài toán trở thành tìm m để bất phương trình\({{u}^{2}}+2\left( m-1 \right)u+{{m}^{2}}-9>0,\,\,\forall u>0\)

Khi đó ta xét 3 trường hợp:

Trường hợp 1: \({\Delta }'<0\Leftrightarrow 10-2m<0\Leftrightarrow m>5\).

Trường hợp 2: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' = 0\\
 - \frac{b}{{2a}} \le 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
10 - 2m = 0\\
1 - m \le 0
\end{array} \right.\\
 \Leftrightarrow \left\{ \begin{array}{l}
m = 5\\
m \ge 1
\end{array} \right. \Leftrightarrow m = 5
\end{array}\)

Trường hợp 3: 

\(\begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' > 0\\
P \ge 0\\
S < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
 - 2m + 10 > 0\\
{m^2} - 9 \ge 0\\
 - 2\left( {m - 1} \right) < 0
\end{array} \right.\\
 \Leftrightarrow 3 \le m < 5
\end{array}\)

Kết hợp các trường hợp ta được \(m\ge 3\).

Kết hợp điều kiện ta được \(m\in \left\{ 3;\,\,4;\,...;\,\,19 \right\}\).

Có 17 giá trị m thỏa mãn.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK