A. 20.
B. \(\sqrt {10} .\)
C. 10
D. \(2\sqrt {10} .\)
A. \(- \sqrt 7 \).
B. \(\pm i \sqrt{7}\).
C. \(\sqrt{7}.\)
D. \(\pm 7 i.\)
A. \(\frac{x}{2}-\frac{\sin 2 x}{4}+C.\)
B. \(x+\frac{\sin 2 x}{2}+C.\)
C. \(\frac{x}{2}+\frac{\sin 2 x}{4}+C.\)
D. \(\frac{x}{2}-\frac{\cos 2 x}{4}+C.\)
A. \(6 \cot x+C.\)
B. \(6 \tan x+C.\)
C. \(-6 \cot x+C.\)
D. \(-6 \tan x+C.\)
A. \(\overline{u_{1}}=(1 ; 0 ;-4).\)
B. \(\overrightarrow{u_{2}}=(1 ;-1 ;-4).\)
C. \(\overline{u_{3}}=(2 ;-1 ; 3).\)
D. \(\overline{u_{4}}=(1 ; 0 ; 4).\)\(\overrightarrow {{u_4}} = \left( {1;0;4} \right)\)
A. 2.
B. 1.
C. 18.
D. 3.
A. \(\frac{1}{2020}.\)
B. 1.
C. 0.
D. \(\frac{1}{2021}.\)
A. \(a=-4, b=3.\)
B. \(a=3, b=4.\)
C. \(a=3, b=-4.\)
D. \(a=-4, b=-3.\)
A. \(|z|=\sqrt{29}.\)
B. \(|z|=3 \sqrt{5},\)
C. \(|z|=5.\)
D. \(|z|=\sqrt{34}.\)
A. \(\frac{4^{x}}{\ln 4}+C.\)
B. \(4^{x+1}+C.\)
C. \(\frac{4^{x+1}}{x+1}+C.\)
D. \(\frac{4^{x+1}}{x+1}+C.\)
A. \(V = \pi \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
B. \(V = \pi \int\limits_a^b {f\left( x \right)dx} \)
C. \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
D. \(V = \int\limits_a^b {f\left( x \right)dx} \)
A. \(S = \int\limits_{ - 1}^3 {\left( { - {x^2} + 2x + 3} \right)dx} \)
B. \(S = \int\limits_{ - 1}^3 {\left( {{x^2} - 2x - 3} \right)dx} \)
C. \(S = \int\limits_{ - 1}^3 {\left( { - {x^2} + 2x - 3} \right)dx} \)
D. \(S = \int\limits_{ - 1}^3 {\left( { - {x^2} + 4x + 3} \right)dx} \)
A. 144.
B. -144.
C. 34.
D. -34.
A. -1.
B. 2.
C. -3.
D. 4.
A. \(F\left( x \right) = \tan x + C\)
B. \(F\left( x \right) = {\rm{cos}}\,x + C\)
C. \(F\left( x \right) = {\rm{cos}}\,x + C.\)
D. \(F\left( x \right) = - {\rm{cos}}\,x + C\)
A. \(3x - 4y + 7z - 10 = 0\)
B. \(3x - 4y + 7z - 10 = 0\)
C. \(2x + 5y - 6z + 10 = 0\)
D. \(- x + 2y + 3z - 10 = 0\)
A. 1
B. 3
C. 7
D. 5
A. \(\int {5f\left( x \right)dx} = 5\int {f\left( x \right)dx} \)
B. \(\int {f\left( x \right).g\left( x \right)dx} = \int {f\left( x \right)dx} .\int {g\left( x \right)dx} \)
C. \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} - \int {g\left( x \right)dx} \)
D. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} + \int {g\left( x \right)dx} \)
A. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 1} \right)^2} = 2\sqrt 6 \)
B. \({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 1} \right)^2} = 2\sqrt 6 \)
C. \({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 1} \right)^2} = 24\)
D. \({\left( {x - 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 1} \right)^2} = 24\)
A. \(3x - y - 2z - 1 = 0\)
B. \(x - 2y + 2z + 1 = 0\)
C. \(3x - y - 2z + 1 = 0\)
D. \(x - 2y + 2z - 1 = 0\)
A. \(\ln \left( {3x + 2} \right) + C\)
B. \(\frac{1}{3}\ln \left( {3x + 2} \right) + C\)
C. \(- \frac{1}{{3{{\left( {3x + 2} \right)}^2}}} + C\)
D. \(- \frac{1}{{{{\left( {3x + 2} \right)}^2}}} + C\)
A. \(\left( { - 1; - 3;1} \right)\)
B. \(\left( { - 1; - 3;-1} \right)\)
C. \(\left( { 1; - 3;1} \right)\)
D. \(\left( { - 1; 3;-1} \right)\)
A. \( - x + y + z + 1 = 0\)
B. \(- x + y - 1 = 0\)
C. \(x - y + z - 1 = 0\)
D. \( - x + y + 1 = 0\)
A. \((3;-4)\)
B. \((3;4)\)
C. \((-3;4)\)
D. \((-3;-4)\)
A. \(\left( {3;1; - 2} \right)\)
B. \(\left( {\frac{3}{2};\frac{1}{2}; - 1} \right)\)
C. \(\left( { - \frac{1}{2};\frac{3}{2}; - 2} \right)\)
D. \(\left( {\frac{1}{2}; - \frac{3}{2};2} \right)\)
A. \(11x - 7y - 2z + 21 = 0\)
B. \(11x - 7y - 2z - 21 = 0\)
C. \(5x +3y - 4z = 0\)
D. \(x +7y - 2z+13 = 0\)
A. \(-2i.\)
B. \(2i.\)
C. 2.
D. \(-2.\)
A. \(\sqrt 2 \)
B. \(\frac{{\sqrt {10} }}{2}\)
C. 3.
D. \(\sqrt{5}\)
A. 4.
B. \(\frac{8}{3}\)
C. \(\frac{4}{3}\)
D. \(\frac{7}{3}\)
A. \(\left( {1;0;0} \right)\)
B. \(\left( {0;-2;3} \right)\)
C. \(\left( {1;0;3} \right)\)
D. \(\left( {1; - 2;0} \right)\)
A. 2
B. -2
C. 4
D. -3
A. \(6+8i\)
B. \(-6-8i\)
C. \(8-6i\)
D. \(-6+8i\)
A. \(\Delta \) cắt \(\Delta '\)
B. \(\Delta \) và \(\Delta '\)chéo nhau.
C. \(\Delta // \Delta '\)
D. \(\Delta \equiv \Delta '\)
A. -4
B. 4
C. 4i
D. 7
A. 2
B. \( - \frac{5}{6}\)
C. \(\frac{5}{6}\)
D. \( - \frac{1}{6}\)
A. \(\left( {2;3; - 1} \right)\)
B. \(\left( { - 1; - 4;3} \right)\)
C. \(\left( { - 1;1; - 2} \right)\)
D. \(\left( {2; - 2;4} \right)\)
A. \(\frac{\pi }{4}\)
B. \(\frac{\pi }{2}\)
C. \(\frac{{{\pi ^2}}}{4}\)
D. \(\frac{{{\pi ^2}}}{2}\)
A. \(\overrightarrow {{n_3}} = \left( {3;2; - 1} \right)\)
B. \(\overrightarrow {{n_4}} = \left( {3; - 2; - 1} \right)\)
C. \(\overrightarrow {{n_2}} = \left( { - 2;3;1} \right)\)
D. \(\overrightarrow {{n_1}} = \left( {3;2;1} \right)\)
A. \(\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z + 2}}{2}\)
B. \(\frac{{x - 3}}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 2}}\)
C. \(\frac{{x + 1}}{3} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 2}}{2}\)
D. \(\frac{{x + 3}}{1} = \frac{{y - 1}}{2} = \frac{{z + 2}}{{ - 2}}\)
A. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\)
B. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right).F\left( a \right)\)
C. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) + F\left( a \right)\)
D. \(\int\limits_a^b {f\left( x \right)dx} = F\left( a \right) - F\left( b \right)\)
A. \(I\left( {0;\sqrt 8 } \right),R = 3\)
B. \(I\left( {0;\sqrt 8 } \right),R = 6\)
C. \(I\left( { - 1;\sqrt 8 } \right),R = 2\)
D. \(I\left( {0; - \sqrt 8 } \right),R = 6\)
A. \(\frac{2}{{\ln 2}}\)
B. \( - \frac{4}{{\ln 2}}\)
C. \( - \frac{2}{{\ln 2}}\)
D. \(\frac{4}{{\ln 2}}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK