Trang chủ Đề thi & kiểm tra Khác Thể tích của khối chóp !! Cho hình chóp S.ABCD có đáy là hình thoi cạnh...

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2,

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, \[\angle BAD = {60^0}\], SA=SC và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB,SD lần lượt tại M và N. Thể tích lớn nhất V0 của khối đa diện ABCDNEM bằng:

A.\[{V_0} = \frac{{2\sqrt 3 }}{9}\]

B. \[{V_0} = \frac{{8\sqrt 3 }}{{21}}\]

C. \[{V_0} = \frac{{2\sqrt 3 }}{7}\]

D. \[{V_0} = \frac{{4\sqrt 3 }}{9}\]

* Đáp án

* Hướng dẫn giải

Gọi\[O = AC \cap BD\]ta có:

\[SA = SC \Rightarrow {\rm{\Delta }}SAC\]cân tại \[S \Rightarrow SO \bot AC\]

Tam giác SBD vuông cân tại\[S \Rightarrow SO \bot BD\]

\[ \Rightarrow SO \bot \left( {ABCD} \right)\]

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2,  (ảnh 1)

Trong (SBD), gọi\[I = MN \cap BD\]

Đặt \[\frac{{SM}}{{SB}} = x,\,\,\frac{{SN}}{{SD}} = y\,\,(0 < x,\,\,y < 1)\]

Ta có:\[\frac{{{V_{S.AME}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SE}}{{SC}} = \frac{1}{2}x \Rightarrow \frac{{{V_{S.AME}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}x\]

\[\frac{{{V_{S.ANE}}}}{{{V_{S.ADC}}}} = \frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = \frac{1}{2}y \Rightarrow \frac{{{V_{S.ANE}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}y\]

\[ \Rightarrow \frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.AME}}}}{{{V_{S.ABCD}}}} + \frac{{{V_{S.ANE}}}}{{{V_{S.ABCD}}}} = \frac{{x + y}}{4}\,\,\,\left( 1 \right)\]

Ta lại có:\[\frac{{{V_{S.AMN}}}}{{{V_{S.ABD}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SD}} = xy \Rightarrow \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} = \frac{{xy}}{2}\]

\[\frac{{{V_{S.MNE}}}}{{{V_{S.BDC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SD}}.\frac{{SE}}{{SC}} = \frac{1}{2}xy \Rightarrow \frac{{{V_{S.MNE}}}}{{{V_{S.ABCC}}}} = \frac{{xy}}{4}\]

\[ \Rightarrow \frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.AMN}}}}{{{V_{S.ABCD}}}} + \frac{{{V_{S.MNE}}}}{{{V_{S.ABCD}}}} = \frac{{xy}}{2} + \frac{{xy}}{4} = \frac{{3xy}}{4}\,\,\left( 2 \right)\]

Từ (1) và (2) \[ \Rightarrow \frac{{x + y}}{4} = \frac{{3xy}}{4} \Leftrightarrow x + y = 3xy\]

\[ \Leftrightarrow x = \left( {3x - 1} \right)y \Leftrightarrow y = \frac{x}{{3x - 1}}\,\,\left( {x \ne \frac{1}{3}} \right)\]

Do \[x,\,\,y > 0 \Rightarrow 3x - 1 > 0 \Leftrightarrow x > \frac{1}{3}\]

Khi đó ta có\[\frac{{{V_{S.AMNE}}}}{{{V_{S.ABCD}}}} = \frac{1}{4}\left( {x + \frac{x}{{3x - 1}}} \right)\]

Xét hàm số \[f\left( x \right) = x + \frac{x}{{3x - 1}}\,\,\left( {x > \frac{1}{3}} \right)\]ta có:

\[f'\left( x \right) = 1 - \frac{1}{{{{\left( {3x - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - 1 = 1}\\{3x - 1 = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{2}{3}}\\{x = 0\left( {ktm} \right)}\end{array}} \right.\]

BBT:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2,  (ảnh 2)

Dựa vào BBT ta thấy\[\min {V_{S.AMNE}} = \frac{1}{4}.\frac{4}{3}{V_{S.ABCD}} = \frac{1}{3}{V_{S.ABCD}}\]

\[ \Rightarrow \max {V_{ABCDNEM}} = \frac{2}{3}{V_{S.ABCD}} \Rightarrow {V_0} = \frac{2}{3}{V_{S.ABCD}}\]

Ta có: \[{\rm{\Delta }}ABD\]đều cạnh 2 \[\left( {AB = AD,\,\angle BAD = {{60}^0}} \right) \Rightarrow {S_{ABD}} = \frac{{{2^2}\sqrt 3 }}{4} = \sqrt 3 \]

\[ \Rightarrow {S_{ABCD}} = 2\sqrt 3 \]

Tam giác ABD đều cạnh 2 ⇒BD=2, lại có tam giác SBD vuông cân tại S nên

\[SO = \frac{1}{2}BD = 1\]

\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.1.2\sqrt 3 = \frac{{2\sqrt 3 }}{3}\]

Vậy\[{V_0} = \frac{2}{3}{V_{S.ABCD}} = \frac{{4\sqrt 3 }}{9}\]Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích của khối chóp !!

Số câu hỏi: 33

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK