A.\[\frac{3}{8}\]
B. \[\frac{4}{9}\]
C. \(\frac{1}{2}\)
D. \[\frac{5}{9}\]
Gọi O là trọng tâm tam giác BCD
\[\begin{array}{*{20}{l}}{ \Rightarrow \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 3\overrightarrow {GO} }\\{ \Rightarrow \overrightarrow {GA} + 3\overrightarrow {GO} = \vec 0}\\{ \Rightarrow \overrightarrow {GA} = - 3\overrightarrow {GO} }\\{ \Rightarrow \frac{{AG}}{{AO}} = \frac{3}{4}}\end{array}\]
Trong (ABE) gọi\[F = BG \cap AE\,\,\left( {F \in AE} \right)\]
Lấy\[M \in AC\] trong (ACD) gọi\[N = MF \cap AD\,\,\,\left( {N \in AD} \right)\] khi đó ta có mặt phẳng chứa BG cắt AC,AD lần lượt tại M,N chính là (BMN).
Áp dụng định lí Menelaus trong tam giác AOE, cát tuyến BGF:
\[\frac{{GA}}{{GO}}.\frac{{BO}}{{BE}}.\frac{{FE}}{{FA}} = 1 \Rightarrow 3.\frac{2}{3}.\frac{{FE}}{{FA}} = 1 \Rightarrow \frac{{FE}}{{FA}} = \frac{1}{2} \Rightarrow \frac{{AF}}{{AE}} = \frac{2}{3} \Rightarrow F\] là trọng tâm tam giác ACD.
Trong (ACD) kéo dài MN cắt CD tại H. Đặt \[\frac{{AM}}{{AC}} = x\left( {0 < x < 1} \right)\]
Áp dụng định lí Menelaus trong tam giác ACE, cát tuyến MHF:\[\frac{{MA}}{{MC}}.\frac{{HC}}{{HE}}.\frac{{FE}}{{FA}} = 1 \Rightarrow \frac{x}{{1 - x}}.\frac{{HC}}{{HE}}.\frac{1}{2} = 1 \Rightarrow \frac{{HC}}{{HE}} = \frac{{2\left( {1 - x} \right)}}{x}\]
\[\begin{array}{*{20}{l}}{ \Rightarrow HE = \frac{x}{{2\left( {1 - x} \right)}}HC}\\{ \Rightarrow HC + CE = \frac{x}{{2\left( {1 - x} \right)}}HC}\\{ \Rightarrow CE = \frac{{3x - 2}}{{2\left( {1 - x} \right)}}HC}\end{array}\]
Ta có:
\[\begin{array}{*{20}{l}}{HD = HC + 2CE}\\{\,\,\,\,\,\,\,\,\, = HC + \frac{{3x - 2}}{{1 - x}}HC = \frac{{2x - 1}}{{1 - x}}HC}\\{ \Rightarrow \frac{{HE}}{{HD}} = \frac{x}{{2\left( {1 - x} \right)}}:\frac{{2x - 1}}{{1 - x}} = \frac{x}{{2\left( {2x - 1} \right)}}}\end{array}\]
Áp dụng định lí Menelaus trong tam giác AED, cát tuyến MFN:
\[\begin{array}{*{20}{l}}{\frac{{FA}}{{FE}}.\frac{{HE}}{{HD}}.\frac{{ND}}{{NA}} = 1 \Rightarrow 2.\frac{x}{{2\left( {2x - 1} \right)}}.\frac{{ND}}{{NA}} = 1}\\{ \Rightarrow \frac{{ND}}{{NA}} = \frac{{2x - 1}}{x} \Rightarrow \frac{{NA}}{{ND}} = \frac{x}{{2x - 1}}}\\{ \Rightarrow \frac{{NA}}{{NA + ND}} = \frac{x}{{x + 2x - 1}} = \frac{x}{{3x - 1}}}\\{ \Rightarrow \frac{{AN}}{{AD}} = \frac{x}{{3x - 1}}}\end{array}\]
Khi đó ta có\[\frac{{{V_{ABMN}}}}{{{V_{ABCD}}}} = \frac{{AM}}{{AC}}.\frac{{AN}}{{AD}} = x.\frac{x}{{3x - 1}} = \frac{{{x^2}}}{{3x - 1}}\,\,\left( {x > \frac{1}{3}} \right)\]
Xét hàm số \[f\left( x \right) = \frac{{{x^2}}}{{3x - 1}}\,\,\left( {x > \frac{1}{3}} \right)\] ta có
\[f'\left( x \right) = \frac{{2x\left( {3x - 1} \right) - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}} = \frac{{3{x^2} - 2x}}{{{{\left( {3x - 1} \right)}^2}}};f\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0\,(ktm)}\\{x = \frac{2}{3}}\end{array}} \right.\]
BBT:
Dựa vào BBT ta thấy\[\mathop {\min }\limits_{\left( {\frac{1}{3}; + \infty } \right)} f\left( x \right) = f\left( {\frac{2}{3}} \right) = \frac{4}{9}\]
Vậy giá trị nhỏ nhất của tỉ số\[\frac{{{V_{ABMN}}}}{{{V_{ABCD}}}} = \frac{4}{9}\]
Đáp án cần chọn là: B
Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.
Nguồn : timviec365.vnLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK