Trong mặt phẳng tọa độ, tập hợp các điểm M biểu diễn của số phức z thỏa mãn

Câu hỏi :

Trong mặt phẳng tọa độ, tập hợp các điểm M biểu diễn của số phức z thỏa mãn\[\left| {z + 1 + 3i} \right| = \left| {z - 2 - i} \right|\;\]là phương trình đường thẳng có dạng \[ax + by + c = 0\]. Khi đó tỉ số abab bằng:

* Đáp án

* Hướng dẫn giải

Bước 1:

Đặt \[z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right).\]

Bước 2:  Biến đổi rút ra mối quan hệ giữa a,ba,b và suy ra quỹ tích các điểm biểu diễn số phức zz.

Theo bài ra ta có:

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\,\left| {z + 1 + 3i} \right| = \left| {z - 2 - i} \right|}\\{ \Leftrightarrow \left| {a + bi + 1 + 3i} \right| = \left| {a + bi - 2 - i} \right|}\\{ \Leftrightarrow {{\left( {a + 1} \right)}^2} + {{\left( {b + 3} \right)}^2} = {{\left( {a - 2} \right)}^2} + {{\left( {b - 1} \right)}^2}}\\{ \Leftrightarrow {a^2} + 2a + 1 + {b^2} + 6b + 9 = {a^2} - 4a + 4 + {b^2} - 2b + 1}\\{ \Leftrightarrow 6a + 8b + 5 = 0}\end{array}\]

Suy ra tập hợp các điểm M biểu diễn số phức z là đường thẳng\[6x + 8y + 5 = 0\]

Vậy\[\frac{a}{b} = \frac{6}{8} = \frac{3}{4}\]

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về điểm biểu diễn số phức trong mặt !!

Số câu hỏi: 34

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK