Cho tứ diện \(ABCD\) có \(AB = BC = AC = CD = DB = a,\,\,AD = \dfrac{{a\sqrt 3 }}{2}\). Gọi \(M\) là trung điểm của \(AB\), điểm \(O\) là tâm đường tròn ngoại tiếp tam giác \(BCD\)...

Câu hỏi :

Cho tứ diện \(ABCD\) có \(AB = BC = AC = CD = DB = a,\,\,AD = \dfrac{{a\sqrt 3 }}{2}\). Gọi \(M\) là trung điểm của \(AB\), điểm \(O\) là tâm đường tròn ngoại tiếp tam giác \(BCD\). Đường thẳng \(AO\) cắt mặt phẳng \(\left( {MCD} \right)\) tại \(G\). Tính diện tích tam giác \(GAD\).

A. \(\dfrac{{\sqrt 3 {a^2}}}{{32}}\)  

B. \(\dfrac{{3\sqrt 3 {a^2}}}{{32}}\)   

C. \(\dfrac{{3\sqrt 3 {a^2}}}{{16}}\)    

D. \(\dfrac{{\sqrt 3 {a^2}}}{{16}}\) 

* Đáp án

B

* Hướng dẫn giải

Tam giác \(ACD\) có \(AC = CD = a,AD = \dfrac{{a\sqrt 3 }}{2}\) nên \(A{E^2} = \dfrac{{A{C^2} + A{D^2}}}{2} - \dfrac{{C{D^2}}}{4}\) \( = \dfrac{{{a^2} + \dfrac{{3{a^2}}}{4}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{5{a^2}}}{8}\)

Tam giác \(BCD\) đều \( \Rightarrow BE = \dfrac{{a\sqrt 3 }}{2}\).

Tam giác \(ABE\) có \(EM\) là đường trung tuyến của tam giác \(AEB\) nên :

\(E{M^2} = \dfrac{{E{A^2} + E{B^2}}}{2} - \dfrac{{A{B^2}}}{4}\) \( = \dfrac{{\dfrac{{5{a^2}}}{8} + \dfrac{{3{a^2}}}{4}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{7{a^2}}}{{16}}\)

Xét tam giác \(BME\) và bộ ba điểm \(A,G,O\) thẳng hàng có :

\(\dfrac{{AM}}{{AB}}.\dfrac{{OB}}{{OE}}.\dfrac{{GE}}{{GM}} = 1\) \( \Rightarrow \dfrac{1}{2}.2.\dfrac{{GE}}{{GM}} = 1 \Leftrightarrow \dfrac{{GE}}{{GM}} = 1\) hay \(G\) là trung điểm của \(ME\).

Xét tam giác \(ABD\) có \(DM\) là trung tuyến của \(\Delta ABD\) nên

\(D{M^2} = \dfrac{{D{A^2} + B{D^2}}}{2} - \dfrac{{A{B^2}}}{4} = \dfrac{{5{a^2}}}{8}\).

Tam giác \(DME\) có trung tuyến \(DG\) nên

\(D{G^2} = \dfrac{{D{E^2} + D{M^2}}}{2} - \dfrac{{M{E^2}}}{4}\) \( = \dfrac{{\dfrac{{{a^2}}}{4} + \dfrac{{5{a^2}}}{8}}}{2} - \dfrac{{7{a^2}}}{{64}} = \dfrac{{21{a^2}}}{{64}}\).

Lại có \(\cos \widehat {AEM} = \dfrac{{A{E^2} + E{M^2} - A{M^2}}}{{2AE.EM}}\) \( = \dfrac{{\dfrac{{5{a^2}}}{8} + \dfrac{{7{a^2}}}{{16}} - \dfrac{{{a^2}}}{4}}}{{2.\sqrt {\dfrac{{5{a^2}}}{8}.\dfrac{{7{a^2}}}{{16}}} }} = \dfrac{{13}}{{2\sqrt {70} }}\)

\( \Rightarrow A{G^2} = A{E^2} + E{G^2} - 2AE.EG\cos \widehat {AEG}\) \( = \dfrac{{5{a^2}}}{8} + \dfrac{{7{a^2}}}{{64}} - 2.\sqrt {\dfrac{{5{a^2}}}{8}.\dfrac{{7{a^2}}}{{64}}} .\dfrac{{13}}{{2\sqrt {70} }}\) \( = \dfrac{{21{a^2}}}{{64}}\)

Tam giác \(ADG\) có \(A{G^2} = \dfrac{{21{a^2}}}{{64}},A{D^2} = \dfrac{{3{a^2}}}{4},D{G^2} = \dfrac{{21{a^2}}}{{64}}\)

Do đó \(\Delta GAD\) cân tại \(G\).

Gọi \(H\) là trung điểm của \(AD\) thì \(AH = \dfrac{{a\sqrt 3 }}{4},\)

\(G{H^2} = G{A^2} - A{H^2}\) \( = \dfrac{{21{a^2}}}{{64}} - \dfrac{{3{a^2}}}{{16}} = \dfrac{{9{a^2}}}{{64}}\) \( \Rightarrow GH = \dfrac{{3a}}{8}\)

Diện tích tam giác \({S_{GAD}} = \dfrac{1}{2}GH.AD\) \( = \dfrac{1}{2}.\dfrac{{3a}}{8}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{3{a^2}\sqrt 3 }}{{32}}\)

Chọn B.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK