Cho tam giác ABC đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho \(DE = B{\rm{D}}.\) Gọi M, N theo thứ tự là trung điểm của BC và EC. Gọi P, Q lần lượt là giao điểm của AM, AN với BE. Chứng minh rằng: \(BP = PQ = QE.\)
M là trung điểm của BC (gt) nên AM là đường trung tuyến của \(\Delta ABC\).
Lại có BD là trung tuyến của \(\Delta ABC\), mà AM cắt BE tại P nên P là trọng tâm của \(\Delta ABC\), ta có: \(BP = \dfrac{2 }{ 3}B{\rm{D}}.\)
Chứng minh tương tự ta có Q là trọng tâm của \(\Delta AC{\rm{E}} \Rightarrow QE = \dfrac{2 }{ 3}DE\)
mà \(DE = B{\rm{D}}\) (gt) \( \Rightarrow BP = QE.\)
Mặt khác vì \(PB = 2P{\rm{D}}\) (tính chất trọng tâm) và \(QE = 2Q{\rm{D}}\), do đó \(BP = PQ = QE.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK