Giải các phương trình sau:
a) \(sin^2(\frac{x}{2}) - 2cos(\frac{x}{2}) + 2 = 0\);
b) \(\small 8cos^2x + 2sinx - 7 = 0\);
c) \(\small 2tan^2x + 3tanx + 1 = 0\);
d) \(\small tanx -2cotx + 1 = 0\).
Câu a:
\(sin^2\frac{x}{2}-2cos\frac{x}{2}+2=0\Leftrightarrow 1-cos^2\frac{x}{2}- 2cos\frac{x}{2}+2=0\)
\(\Leftrightarrow cos^2\frac{x}{2}+2cos\frac{x}{2}-3=0\)
Đặt \(t=cos\frac{x}{2},-1\leq t\leq 1\), ta có phương trình:
\(t^2+2t-3=0\Leftrightarrow \bigg \lbrack\begin{matrix} t=1\\ t=-3 \ \ (loai) \end{matrix}\)
\(t=1\Leftrightarrow cos\frac{x}{2}=1\Leftrightarrow \frac{x}{2}=k2\pi,k\in \mathbb{Z} \Leftrightarrow x=k 4 \pi, k\in \mathbb{Z}\)
Vậy phương trình có nghiệm là: \(x=k 4 \pi, k\in \mathbb{Z}\)
Câu b:
\(8cos^2x+2sinx-7=0\Leftrightarrow 8(1-sin^2x)+2sinx-7=0\)
\(\Leftrightarrow 8-8sin^2x+2sinx-7=0\)
\(\Leftrightarrow 8sin^2x-2sinx-1=0\)
Đặt \(t=sinx,-1\leq t\leq 1\), ta có phương trình:
\(8t^2-2t-1=0\Leftrightarrow \Bigg \lbrack\begin{matrix} t=\frac{1}{2}\\ \\ t=-\frac{1}{4} \end{matrix} (nhan)\)
Vậy phương trình có nghiệm là: \(\Bigg \lbrack\begin{matrix} x=\frac{\pi }{6}+k2\pi\\ x=\frac{5\pi }{6}+k2\pi\\ x=arcsin \left ( -\frac{1}{4} \right )+k2\pi \\ x=\pi -arcsin \left ( -\frac{1}{4} \right )+k2\pi \end{matrix},k\in \mathbb{Z}\)
Câu c:
\(2tan^2x+3tanx+1=0\)
Đặt t = tanx (điều kiện \(x\neq \frac{\pi }{2}+k\pi , k\in \mathbb{Z}\))
Ta có phương trình: \(2t^2+3t+1=0\Leftrightarrow \Bigg \lbrack\begin{matrix} t=1\\ \\ t=-\frac{1}{2} \end{matrix}\)
\(t=-1\Rightarrow tanx=-1\Rightarrow tanx=-tan\frac{\pi }{4}\)
\(\Rightarrow tanx=tan\left ( -\frac{\pi }{4} \right )\Rightarrow x=-\frac{\pi }{4} +k \pi\) (thoả điều kiện)
\(t=\frac{1}{2}\Rightarrow tanx=\frac{1}{2}\Rightarrow x=arctan \left ( \frac{1}{2} \right ) +k \pi\) (thoả điều kiện)
Vậy phương trình có nghiệm là: \(\Bigg \lbrack\begin{matrix} x=-\frac{\pi }{4} +k \pi \\ \\ x=arctan \left ( \frac{1}{2} \right )+k \pi \end{matrix}, (k\in \mathbb{Z})\)
Câu d:
\(tanx-2cotx+1=0\)
Điều kiện \(\left\{\begin{matrix} x\neq \frac{\pi }{2}+k \pi, k\in \mathbb{Z}\\ x\neq k \pi \end{matrix}\right.\) hay \(x\neq k\frac{\pi }{2}, k\in \mathbb{Z}\)
Đặt t = tanx, ta có phương trình:
\(t-\frac{2}{t}+1=0\Rightarrow t^2+t-2=0\Rightarrow \bigg \lbrack\begin{matrix} t=1\\ t=-2 \end{matrix}\)
\(\Rightarrow tanx=tan\frac{\pi }{4}\Rightarrow x=\frac{\pi }{4}+k \pi, k\in \mathbb{Z}\) (thoả điều kiện)
Vậy phương trình có nghiệm là: \(\Bigg \lbrack\begin{matrix} x=\frac{\pi }{4}+k \pi \\ \\ x=arctan(-2)+k \pi \end{matrix}, k\in \mathbb{Z}\)
-- Mod Toán 11
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK