Bài tập 4 trang 17 SGK Đại số & Giải tích 11

Lý thuyết Bài tập
Câu hỏi:

Bài tập 4 trang 17 SGK Đại số & Giải tích 11

Chứng minh rằng \(\small sin2(x + k \pi ) = sin 2x\) với mọi số nguyên k. Từ đó vẽ đồ thị hàm số \(\small y = sin2x\).

Để vẽ được đồ thị hàm số lượng giác ta cần tìm được chu kì tuần hoàn của hàm số đó:

Trong bài này ta áp dụng nhận xét sau: Hàm số \(y = \sin \left( {ax + b} \right),y = \cos \left( {ax + b} \right)\) với \(a\ne 0\) cho chu kì \(T = \frac{{2\pi }}{{\left| a \right|}}.\).

Lời giải:

Ta có \(sin2(x+k\pi)=sin(2x+2k \pi)=sin2x, k\in \mathbb{Z}\).

Từ đó suy ra hàm số y = sin2x là hàm số tuần hoàn chu kì \(\pi\), mặt khác y = sin2x là hàm số lẻ, do đó ta vẽ đồ thị hàm số y = sin2x trên \(\left [ 0;\frac{\pi }{2} \right ]\), rồi lấy đối xứng qua O ta có đồ thị trên \(\left [ -\frac{\pi }{2};\frac{\pi }{2} \right ]\) rồi sử dụng phép tịnh tiến  \(\vec{v}= (\pi; 0)\) và \(-\vec{v}= (-\pi; 0)\) ta được đồ thị hàm số y = sin2x.

Xét y = sin2x trên \(\left [ 0;\frac{\pi }{2} \right ]\) ta có bảng biến thiên:

suy ra trên \(\left [ -\frac{\pi }{2};\frac{\pi }{2} \right ]\), y = sin2x có đồ thị dạng:

Do vậy đồ thị y = sin2x có dạng:

 

-- Mod Toán 11

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK