Trang chủ Đề thi & kiểm tra Khác Các bài toán về đường thẳng và mặt cầu !! Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt...

Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu

Câu hỏi :

Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]. Điểm M thuộc mặt cầu (S) sao cho tổng \[3M{A^2} + 2M{B^2} + M{C^2}\;\] đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \[\overrightarrow {OM} \;\] là

A.\[\sqrt {110} \]

B. \[3\sqrt {10} \]

C. \[\frac{{3\sqrt {10} }}{5}\]

D. \[\frac{{\sqrt {110} }}{5}\]

* Đáp án

* Hướng dẫn giải

Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu  (ảnh 1)

+) Mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]có tâm J(1;1;1), bán kính R=1.

+) Tìm I: \[3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} = \vec 0 \Leftrightarrow 6\overrightarrow {IA} + 2\overrightarrow {AB} + \overrightarrow {AC} = \vec 0 \Leftrightarrow \overrightarrow {IA} = - \frac{{2\overrightarrow {AB} + \overrightarrow {AC} }}{6}\]

\[A\left( {0;1;1} \right),B\left( {3;0; - 1} \right),C\left( {0;21; - 19} \right)\]

\[ \Rightarrow \overrightarrow {IA} \left( { - {x_I};1 - {y_I};1 - {z_I}} \right),\overrightarrow {AB} \left( {3; - 1; - 2} \right),\overrightarrow {AC} \left( {0;20; - 20} \right)\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{ - {x_I} = - \frac{{2.3 + 0}}{6}}\\{1 - {y_I} = - \frac{{2.( - 1) + 20}}{6}}\\{1 - {z_I} = - \frac{{2.( - 2) + ( - 20)}}{6}}\end{array}} \right. \Rightarrow I(1;4; - 3)\)

+) Ta có:

\[\begin{array}{*{20}{l}}{3M{A^2} + 2M{B^2} + M{C^2}}\\{ = 3{{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)}^2} + 2{{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)}^2} + {{\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)}^2}}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2}}\\{ + 2.\overrightarrow {MI} .\left( {3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} } \right)}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2} + 2.\overrightarrow {MI} .\vec 0}\\{ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2}}\end{array}\]

Để tổng trên là nhỏ nhất thì MI nhỏ nhất ⇒M là giao điểm của đoạn thẳng IJ và  mặt cầu (S).

\[\overrightarrow {JI} = \left( {0;3; - 4} \right)\]=> Tọa độ điểm M thuộc đoạn IJ có dạng\[\left( {1;1 + 3t;1 - 4t} \right),t \in \left[ {0;1} \right]\]

Mặt khác\[M \in \left( S \right) \Rightarrow {\left( {1 - 1} \right)^2} + {\left( {1 - \left( {1 + 3t} \right)} \right)^2} + {\left( {1 - \left( {1 - 4t} \right)} \right)^2} = 1\]

\[ \Leftrightarrow {t^2} = \frac{1}{{25}} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \frac{1}{5}}\\{t = - \frac{1}{5}\left( L \right)}\end{array}} \right. \Rightarrow t = \frac{1}{5} \Rightarrow M\left( {1;\frac{8}{5};\frac{1}{5}} \right) \Rightarrow OM = \frac{{3\sqrt {10} }}{5}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về đường thẳng và mặt cầu !!

Số câu hỏi: 23

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK