A. \(P(B) = \frac{1}{3}\)
B. \(P(B) = \frac{1}{4}\)
C. \(P(B) = 1\)
D. \(P(B) = \frac{1}{2}\)
A. \(P(B) = \frac{{143}}{{280}}\)
B. \(P(B) = \frac{{13}}{{280}}\)
C. \(P(B) = \frac{{14}}{{280}}\)
D. \(P(B) = \frac{{13}}{{20}}\)
A. \(P(B) = \frac{{47}}{{460}}\)
B. \(P(B) = \frac{7}{{460}}\)
C. \(P(B) = \frac{{44}}{{461}}\)
D. \(P(B) = \frac{{447}}{{460}}\)
A. \(P\left( A \right) = \frac{{C_{80}^4}}{{C_{100}^5}}\)
B. \(P\left( A \right) = \frac{{C_{80}^4 + C_{20}^1}}{{C_{100}^5}}\)
C. \(P\left( A \right) = \frac{{C_{20}^1}}{{C_{100}^5}}\)
D. \(P\left( A \right) = \frac{{C_{80}^4C_{20}^1}}{{C_{100}^5}}\)
A. \(P(A) = \frac{{450}}{{1807}}\)
B. \(P(A) = \frac{{40}}{{16807}}\)
C. \(P(A) = \frac{{450}}{{16807}}\)
D. \(P(A) = \frac{{450}}{{1607}}\)
A. 29
B. 14
C. 1
D. 43
A. 6
B. 17296
C. 3
D. 103776
A. 64
B. 16
C. 32
D. 20
A. 256
B. 120
C. 24
D. 16
A. m - n cách
B. m.n cách
C. m + n cách
D. m : n cách
A. 20
B. 25
C. 16
D. 9
A. 1000
B. 100.000
C. 10.000
D. 1.000.000
A. 120
B. 216
C. 312
D. 360
A. 36
B. 40
C. 32
D. 320
A. 2940
B. 3360
C. 3150
D. 3340
A. \(7^5\)
B. 5040
C. 240
D. 2401
A. \(\frac{{24}}{{93}}.\)
B. \(\frac{{24}}{{91}}.\)
C. \(\frac{1}{5}.\)
D. \(\frac{1}{{15}}.\)
A. \(\frac{{11}}{{21}}.\)
B. \(\frac{{10}}{{21}}.\)
C. \(\frac{{8}}{{21}}.\)
D. \(\frac{{14}}{{21}}.\)
A. \(\frac{{19}}{{66}}.\)
B. \(\frac{{21}}{{66}}.\)
C. \(\frac{{17}}{{66}}.\)
D. \(\frac{{13}}{{66}}.\)
A. \(\frac{3}{5}\)
B. \(\frac{21}{26}\)
C. \(\frac{8}{21}\)
D. \(\frac{4}{7}\)
A. \(C_{2007}^7 = C_{2006}^7 + C_{2006}^6\)
B. \(C_{2007}^7 = C_{2006}^{2000} + C_{2006}^6\)
C. \(C_{2007}^7 = C_{2006}^{2000} + C_{2006}^{1999}\)
D. \(C_{2007}^7 = C_{2006}^7 + C_{2006}^{2000}\)
A. \(C_{20}^0 + C_{20}^1 + ... + C_{2n}^n = C_{2n}^{n + 1} + C_{2n}^{n + 2} + ... + C_{2n}^{2n}\)
B. \(C_{2n}^0 + C_{2n}^1 + ... + C_{2n}^{n - 1} = C_{2n}^{n + 1} + C_{2n}^{n + 2} + ...C_{2n}^{2n}\)
C. \(C_{2n}^0 + C_{2n}^1 + ... + C_{2n}^{n - 2} = C_{2n}^{n + 1} + C_{2n}^{n + 2} + ... + C_{2n}^{2n}\)
D. \(C_{2n}^0 + C_{2n}^1 + ... + C_{2n}^{n + 1} = C_{2n}^{n + 1} + C_{2n}^{n + 2} + ... + C_{2n}^{2n}\)
A. \(p(x) = {x^6} - 6{x^5}y + 15{x^4}{y^2} - 20{x^3}{y^3} + 15{x^2}{y^4} - 6x{y^5} + {y^6}\)
B. \(p(x) = {x^6} + 6{x^5}y + 15{x^4}{y^2} + 20{x^3}{y^3} + 15{x^2}{y^4} + 6x{y^5} + {y^6}\)
C. \(p(x) = {x^6} + 6{x^5}y - 15{x^4}{y^2} - 20{x^3}{y^3} - 15{x^2}{y^4} - 6x{y^5} + {y^6}\)
D. \(p(x) = {x^6} + 6{x^5}y + 15{x^4}{y^2} + 20{x^3}{y^3} - 15{x^2}{y^4} - 6x{y^5} - {y^6}\)
A. \(p(x) = {x^6} - 6{x^5}y + 15{x^4}{y^2} - 20{x^3}{y^3} + 15{x^2}{y^4} - 6x{y^5} + {y^6}\)
B. \(p(x) = {x^6} - 6{x^5}2y + 15{x^4}2{y^2} - 20{x^3}2{y^3} + 15{x^2}2{y^4} - 6x2{y^5} + 2{y^6}\)
C. \(p(x) = {x^6} + 6{x^5}2y + 15{x^4}2{y^2} + 20{x^3}2{y^3} + 15{x^2}2{y^4} + 6x2{y^5} + 2{y^6}\)
D. \(p(x) = {x^6} - 12{x^5}y + 60{x^4}{y^2} - 160{x^3}{y^3} + 240{x^2}{y^4} - 192x{y^5} + 64{y^6}\)
A. 625
B. 3125
C. 18750
D. 1
A. 1000000
B. 1024
C. -1024
D. 1
A. \(S = {(x + y)^6}\)
B. \(S = {(x - y)^6}\)
C. \(S = {(x +3 y)^6}\)
D. \(S = {(x -3 y)^6}\)
A. \(S = {(1 - 2x)^5}\)
B. \(S = {(1 + 2x)^5}\)
C. \(S = {( 2x-1)^5}\)
D. \(S = {(x-1)^5}\)
A. \(1 + 2 + 3 + 4 + ... + n = C_{n + 1}^2\)
B. \(1 + 2 + 3 + 4 + ... + n = A_{n + 1}^2\)
C. \(1 + 2 + 3 + 4 + ... + n = C_n^1 + C_n^2 + ... + C_n^n\)
D. \(1 + 2 + 3 + 4 + ... + n = A_n^1 + A_n^2 + ... + A_n^n\)
A. \(C_{2n}^0 + C_{2n}^2 + ... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + ... + C_{2n}^{2n - 1}\)
B. \(C_{2n}^0 + C_{2n}^2 + ... + C_{2n}^{2n} > C_{2n}^1 + C_{2n}^3 + ... + C_{2n}^{2n - 1}\)
C. \(C_{2n}^0 + C_{2n}^2 + ... + C_{2n}^{2n} < C_{2n}^1 + C_{2n}^3 + ... + C_{2n}^{2n - 1}\)
D. \(C_{2n}^0 - C_{2n}^2 - C_{2n}^4 - ... - C_{2n}^{2n - 2} + C_{2n}^{2n} = C_{2n}^1 - C_{2n}^3 - C_{2n}^5 - ... - C_{2n}^{2n - 3} + C_{2n}^{2n - 1}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK