A. 4
B. 24
C. 44
D. 16
A. \(\frac{3}{2}\)
B. \( - \frac{3}{8}\)
C. \(\frac{3}{4}\)
D. 2
A. \(y' = \frac{1}{{\left( {4x + 1} \right)\ln 3}}.\)
B. \(y' = \frac{4}{{\left( {4x + 1} \right)\ln 3}}.\)
C. \(y' = \frac{{\ln 3}}{{4x + 1}}.\)
D. \(y' = \frac{{4\ln 3}}{{4x + 1}}.\)
A. \(\int\limits_{}^{} {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} = \int\limits_{}^{} {f\left( x \right){\rm{d}}x} + \int\limits_{}^{} {g\left( x \right){\rm{d}}x} \)
B. \(\int\limits_{}^{} {kf\left( x \right){\rm{d}}x} = k\int\limits_{}^{} {f\left( x \right){\rm{d}}x} \)
C. \(\int\limits_{}^{} {f\left( x \right)g\left( x \right){\rm{d}}x} = \int\limits_{}^{} {f\left( x \right){\rm{d}}x} .\int\limits_{}^{} {g\left( x \right){\rm{d}}x} \)
D. \(\int\limits_{}^{} {f'\left( x \right){\rm{d}}x} = f\left( x \right) + C\) , \(\left( {C \in R} \right)\)
A. \(\frac{{\sqrt 2 {a^3}}}{3}\)
B. \(\sqrt 2 {a^3}\)
C. \(3\sqrt 2 {a^3}\)
D. \(\frac{{\sqrt 2 {a^3}}}{6}\)
A. \(\frac{{{a^3}\sqrt 3 }}{{12}}\)
B. \(\frac{{{a^3}\sqrt 3 }}{4}\)
C. \(\frac{{{a^3}\sqrt 3 }}{6}\)
D. \(\frac{{{a^3}\sqrt 3 }}{3}\)
A. \(2\sqrt[3]{9}\)
B. 3
C. 6
D. \(6\sqrt 2 \)
A. \(\left( {0; + \infty } \right)\)
B. (0;2)
C. (3;7)
D. \(( - \infty ;1)\)
A. \(2 + {\log _2}a\)
B. \(3{\log _2}a\)
C. \(18{\log _2}a\)
D. \(2{\log _2}a\)
A. \(80\pi \)
B. \(20\pi \)
C. \(60\pi \)
D. \(68\pi \)
A. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c > 0;{\rm{ }}d = 0\)
B. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c = 0;{\rm{ }}d = 0\)
C. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c = 0;{\rm{ }}d = 0\)
D. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c < 0;{\rm{ }}d = 0\)
A. 3
B. 0
C. 1
D. 2
A. \(\left( { - \infty ;1} \right)\)
B. \(\left( { - \infty ;1} \right]\)
C. \(\left[ {1; + \infty } \right)\)
D. (0;1]
A. 3
B. 1
C. 0
D. 2
A. 8
B. 4
C. 6
D. 11
A. \(\bar z = \frac{{ - 7}}{5} + \frac{1}{5}i\)
B. \(\bar z = \frac{{ - 7}}{5} - \frac{1}{5}i\)
C. \(\bar z = \frac{{ - 7}}{3} - \frac{1}{5}i\)
D. \(\bar z = \frac{{ - 7}}{3} + \frac{1}{3}i\)
A. -4
B. 2i
C. 4
D. 2
A. (1;0;0)
B. (0;2;-5)
C. (0;0;-5)
D. (1;2;0)
A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 9\)
B. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 9\)
C. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 3\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 3\)
A. \(\mathop {{n_1}}\limits^ \to \left( {3\,;\, - 2\,;\, - 3} \right).\)
B. \({\mathop n\limits^ \to _2}\left( {3\,;\, - 2\,;\,1} \right)\)
C. \(\mathop {{n_3}}\limits^ \to \left( {3\,;\, - 2\,;\,0} \right)\)
D. \({\mathop n\limits^ \to _4}\left( {3\,;\,0\,;\, - 2} \right)\)
A. \(M\left( { - 1; - 4;2} \right)\)
B. \(N\left( {5;\,\,4;\, - 2} \right)\)
C. \(P\left( {2;\,\,4;\, - 1} \right)\)
D. \(Q\left( {8;\,8;\, - 1} \right)\)
A. 45o
B. 60o
C. 90o
D. 30o
A. \(\frac{{13}}{3}\)
B. \(\frac{{15}}{3}\)
C. 9
D. -7
A. \(A = \left( {3 - a} \right)a\)
B. \(A = \frac{{3 + a}}{a}\)
C. \(A = \frac{{3 - a}}{a}\)
D. \(A = \left( {3 + a} \right)a\)
A. 0
B. 1
C. 2
D. 3
A. \(\left( {2; + \infty } \right)\)
B. \(\left( {0; + \infty } \right)\)
C. \(\left( {1; + \infty } \right)\)
D. \(\left( { - \infty ;1} \right)\)
A. \(4\pi {a^3}\)
B. \(8\pi {a^3}\)
C. \(4\sqrt 3 \pi {a^3}\)
D. \(8\sqrt 3 \pi {a^3}\)
A. \(\int\limits_0^2 {{u^2}du} \)
B. \(\frac{1}{2}\int\limits_0^{\sqrt 2 } {{u^2}du} \)
C. \(\frac{1}{2}\int\limits_0^2 {{u^2}du} \)
D. \(\int\limits_0^{\sqrt 2 } {{u^2}du} \)
A. \(S = \pi \int\limits_1^3 {\left| {{x^3} - 6{x^2} + 11x - 6} \right|} \,{\rm{d}}x\)
B. \(S = \int\limits_1^3 {({x^3} - 6{x^2} + 11x - 6} \,){\rm{d}}x\)
C. \(S = \int\limits_1^3 {\left| {{x^3} - 6{x^2} + 11x - 6} \right|} \,{\rm{d}}x\)
D. \(S = \int\limits_1^3 {(11x - 6 - {x^3} + 6{x^2}} \,){\rm{d}}x\)
A. x = -1; y = 2
B. x = 3; y = 2
C. x = 1; y = 3
D. x = -1; y = 1
A. -1
B. \(\sqrt {13} \)
C. 5
D. 13
A. 3x + 4y + 2z + 1 = 0
B. 3x - 4y + 2z + 17 = 0
C. 3x + 4y + 2z - 1 = 0
D. 3x - 4y + 2z - 17 = 0
A. \(\frac{{x + 3}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{ - z}}{1}\)
B. \(\frac{{x - 3}}{3} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\)
C. \(\frac{{x - 3}}{3} = \frac{{y + 2}}{1} = \frac{z}{1}\)
D. \(\frac{{x + 3}}{3} = \frac{{y - 2}}{1} = \frac{z}{1}\)
A. \(\frac{5}{{42}}\)
B. \(\frac{1}{{10}}\)
C. \(\frac{1}{6}\)
D. \(\frac{7}{{35}}\)
A. \(\frac{{3a\sqrt 3 }}{4}\)
B. \(\frac{a}{2}\)
C. \(\frac{{a\sqrt 3 }}{4}\)
D. \(\frac{{a\sqrt 3 }}{2}\)
A. 1
B. 3
C. 2
D. 0
A. 392
B. 398
C. 390
D. 391
A. \(40\pi {a^2}\)
B. \(108\pi {a^2}\)
C. \(80\pi {a^2}\)
D. \(54\pi {a^2}\)
A. I = 3
B. \(I = \frac{3}{2}\)
C. I = 2
D. \(I = \frac{5}{2}\)
A. (10;15)
B. \(\left[ {\frac{{ - 11}}{2};\,\frac{{13}}{2}} \right)\)
C. [-10;10)
D. [15;20]
A. \(\frac{{153}}{2}\)
B. 108
C. \(\frac{{63}}{2}\)
D. 70
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK