Cho hàm số \(y=\frac{2x-1}{x-2}\) có đồ thị \(\left( C \right)\). Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại M cắt các đường tiệ...

Câu hỏi :

Cho hàm số \(y=\frac{2x-1}{x-2}\) có đồ thị \(\left( C \right)\). Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến \(\Delta \) của \(\left( C \right)\) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào?

A. (26;27)

B. (29;30)

C. (27;28)

D. (28;29)

* Đáp án

C

* Hướng dẫn giải

Gọi \(M\left( {{x}_{0}};\frac{2{{x}_{0}}-1}{{{x}_{0}}-2} \right)\in \left( C \right)\,,\,\left( {{x}_{0}}\ne 2 \right)\). Phương trình tiếp tuyến tại M có dạng

\(\Delta :y=-\frac{3}{{{({{x}_{0}}-2)}^{2}}}(x-{{x}_{0}})+\frac{2{{x}_{0}}-1}{{{x}_{0}}-2}\).

Giao điểm của \(\Delta \) với tiệm cận đứng là \(A\left( 2;\,\,\frac{2{{x}_{0}}+2}{{{x}_{0}}-2} \right)\).

Giao điểm của \(\Delta \) với tiệm cận ngang là \(B\left( 2{{x}_{0}}-2;\,\,2 \right)\).

Xét \(\left\{ \begin{align} & {{x}_{A}}+{{x}_{B}}=2+2{{x}_{0}}-2=2{{x}_{0}} \\ & {{y}_{A}}+{{y}_{B}}=\frac{2{{x}_{0}}+2}{{{x}_{0}}-2}+2=2.\frac{2{{x}_{0}}-1}{{{x}_{0}}-2}=2{{y}_{0}} \\ \end{align} \right.\)⇒ M là trung điểm của AB.

\(\Delta \,IAB\) vuông tại I nên M là tâm đường tròn ngoại tiếp tam giác IAB.

\(\Rightarrow S=\pi {{R}^{2}}=\pi I{{M}^{2}}=\pi \left[ {{({{x}_{0}}-2)}^{2}}+{{\left( \frac{2{{x}_{0}}-1}{{{x}_{0}}-2}-2 \right)}^{2}} \right]=\pi \left[ {{({{x}_{0}}-2)}^{2}}+\frac{9}{{{({{x}_{0}}-2)}^{2}}} \right]\ge 6\pi \)

Dấu ''='' xảy ra khi \({{({{x}_{0}}-2)}^{2}}=\frac{9}{{{({{x}_{0}}-2)}^{2}}}\Leftrightarrow \left[ \begin{align} & {{x}_{0}}=\,\,\,\,\sqrt{3}+2\Rightarrow {{y}_{0}}=\,\,\,\,\,\sqrt{3}+2 \\ & {{x}_{0}}=-\sqrt{3}+2\Rightarrow {{y}_{0}}=-\sqrt{3}+2 \\ \end{align} \right.\).

Với \({{x}_{0}}=\,\,\,\,\sqrt{3}+2\Rightarrow \Delta :y=-x+2\sqrt{3}+4\) cắt 2 trục tọa độ tại \(E\left( 0;\,\,2\sqrt{3}+4 \right)\) và \(F\left( \,2\sqrt{3}+4;\,\,0 \right)\), suy ra \({{S}_{OEF}}=\frac{1}{2}\,OE.OF=14+8\sqrt{3}\approx 27,8564\)

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK