Có bao nhiêu cặp số nguyên dương (m; n) sao cho và ứng với mỗi cặp (m;n) tồn tại đúng 3 số thực thỏa mãn ?

Câu hỏi :

Có bao nhiêu cặp số nguyên dương (m; n) sao cho \(m + n \le 10\) và ứng với mỗi cặp (m;n) tồn tại đúng 3 số thực \(a \in \left( { - 1;1} \right)\) thỏa mãn \(2{a^m} = n\ln \left( {a + \sqrt {{a^2} + 1} } \right)\)?

A. 7

B. 8

C. 10

D. 9

* Đáp án

D

* Hướng dẫn giải

Ta có \(2{a^m} = n\ln \left( {a + \sqrt {{a^2} + 1} } \right) \Leftrightarrow \frac{{2{a^m}}}{n} = \ln \left( {a + \sqrt {{a^2} + 1} } \right)\).

Xét hai hàm số \(f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) và \(g\left( x \right) = \frac{2}{n}{x^m}\) trên (-1;1).

Ta có \(f'\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }} > 0\) nên f(x) luôn đồng biến và \(f\left( { - x} \right) = \ln \left( { - x + \sqrt {{x^2} + 1} } \right) = \ln \left( {\frac{1}{{x + \sqrt {{x^2} + 1} }}} \right) = - \ln \left( {x + \sqrt {{x^2} + 1} } \right) = - f\left( x \right)\) nên f(x) là hàm số lẻ.

+ Nếu m chẵn thì g(x) là hàm số chẵn và có bảng biến thiên dạng

Suy ra phương trình có nhiều nhất 2 nghiệm, do đó m lẻ.

+ Nếu m lẻ thì hàm số g(x) là hàm số lẻ và luôn đồng biến.

Ta thấy phương trình luôn có nghiệm x = 0. Dựa vào tính chất đối xứng của đồ thị hàm số lẻ, suy ra phương trình đã cho có đúng 3 nghiệm trên (-1;1) khi có 1 nghiệm trên (0;1), hay \(f\left( 1 \right) > g\left( 1 \right) \Leftrightarrow \ln \left( {1 + \sqrt 2 } \right) < \frac{2}{n} \Leftrightarrow n < \frac{2}{{\ln \left( {1 + \sqrt 2 } \right)}} \approx 2,26 \Rightarrow n \in \left\{ {1;2} \right\}\).

Đối chiếu điều kiện, với n = 1 suy ra \(m \in \left\{ {1;3;5;7;9} \right\}\), có 5 cặp số thỏa mãn

Với n = 2 thì \(m \in \left\{ {1;3;5;7} \right\}\) có 4 cặp số thỏa mãn.

Vậy có 9 cặp số thỏa mãn bài toán.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK