Phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 820 biết ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có t...

Câu hỏi :

Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2,thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 820?

A. 20

B. 42

C. 21

D. 17

* Đáp án

A

* Hướng dẫn giải

Gọi số hạng thứ hai của cấp số cộng là \(u_2\) thì số hạng thứ 9 và thứ 44 của cấp số cộng này là \({u_9} = {u_2} + 7d,{u_{44}} = {u_2} + 42d\) (d là công sai của cấp số cộng, \(d \ne 0\) vì \({u_2},{u_9},{u_{44}}\) phân biệt). Ta có \(\left\{ \begin{array}{l}
{u_2}.{u_{44}} = u_9^2\\
{u_2} + {u_9} + {u_{44}} = 217
\end{array} \right.\) nên \(\left\{ \begin{array}{l}
{u_2}.({u_2} + 42d) = {({u_2} + 7d)^2}\\
{u_2} + {u_2} + 7d + {u_2} + 42d = 217
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_2} = 7\\
d = 4
\end{array} \right.\) (do \(d \ne 0\) Do đó \({u_1} = {u_2} - d = 3\) và \({S_n} = \frac{n}{2}(2{u_1} + (n - 1)d) = n(2n + 1).\) Phương trình \(n(2n + 1) = 820\) có một nghiệm nguyên dương là n = 20.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

40 câu trắc nghiệm ôn tập Chương 3 Đại số 11

Số câu hỏi: 40

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK