Trang chủ Đề thi & kiểm tra Lớp 11 Toán học Đề kiểm tra 1 tiết Chương 1 Hình học 11 năm 2019 - 2020 Trường THPT Nguyễn Khuyến

Đề kiểm tra 1 tiết Chương 1 Hình học 11 năm 2019 - 2020 Trường THPT Nguyễn Khuyến

Câu hỏi 3 :

Cho phép quay \({Q_{\left( {O,\;\varphi } \right)}}\) biến điểm A thành điểm A' và biến điểm M thành điểm M'. Mệnh đề nào sau đây là sai?

A. \(\overrightarrow {AM}  = \overrightarrow {A'M'} \)

B. \(\widehat {\left( {OA,{\rm{ }}OA'} \right)} = \widehat {\left( {OM,{\rm{ }}OM'} \right)} = \varphi \)

C. \(\widehat {\left( {\overrightarrow {AM} ,{\rm{ }}\overrightarrow {A'M'} } \right)} = \varphi \) với \(0 \le \varphi  \le \pi \)

D. \(AM = A'M'\)

Câu hỏi 5 :

Cho tam giác đều ABC có tâm là điểm O. Phép quay tâm O, góc quay φ biến tam giác ABC thành chính nó. Khi đó đó một góc φ thỏa mãn là

A. \(\varphi  = {60^0}.\)

B. \(\varphi  = {90^0}.\)

C. \(\varphi  = {120^0}.\)

D. \(\varphi  = {180^0}.\)

Câu hỏi 7 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Ảnh của (C) qua phép vị tự tâm I(2;-2) tỉ số vị tự bằng 3 là đường tròn có phương trình

A. \({\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)

B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 36.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 10} \right)^2} = 36.\)

D. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = 36.\)

Câu hỏi 8 :

Phép vị tự tâm O tỉ số \(k, \left( {k \ne 0} \right)\) biến mỗi điểm  thành điểm . Mệnh đề nào sau đây đúng?

A. \(k\overrightarrow {OM}  = \overrightarrow {OM'} \)

B. \(\overrightarrow {OM}  = k\overrightarrow {OM'} \)

C. \(\overrightarrow {OM}  =  - k\overrightarrow {OM'} \)

D. \(\overrightarrow {OM}  =  - \overrightarrow {OM'} \)

Câu hỏi 10 :

Phát biểu nào sau đây là sai?

A. Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kỳ.

B. Phép dời hình biến đường tròn thành đường tròn có cùng bán kính.

C. Phép dời hình biến đường thẳng thành đường thẳng

D. Phép dời hình biến ba điểm thẳng hàng thành ba điểm không thẳng hàng và không bảo toàn thứ tự giữa các điểm.

Câu hỏi 11 :

Trong mặt phẳng Oxy, cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn (C') là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)  

A. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)

B. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 36.\)

C. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 6.\)

D. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 2.\)

Câu hỏi 12 :

Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là:

A. Phép vị tự.

B. Phép đồng dạng, phép vị tự.

C. Phép đồng dạng, phép vị tự.

D. Phép dời dình, phép vị tự.

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK