Cho điểm A(0;8;2) và mặt cầu (S) có phương trình

Câu hỏi :

Cho điểm A(0;8;2) và mặt cầu (S) có phương trình \[\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\;\]và điểm B(1;1;−9). Viết phương trình mặt phẳng (P) qua A tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Giả sử \[\overrightarrow n = \left( {1;m;n} \right)\;\]là véctơ pháp tuyến của (P). Lúc đó:

A.\[mn = \frac{{276}}{{49}}\]

B. \[mn = - \frac{{276}}{{49}}\]

C. \[mn = 4\]

D. \[mn = - 4\]

* Đáp án

* Hướng dẫn giải

(S) có tâm I(5;−3;7) và bán kính\[R = 6\sqrt 2 \]

Theo đề bài ta có phương trình (P) có dạng\[x + m(y - 8) + n(z - 2) = 0\]

Vì (P) tiếp xúc với (S) nên

\[{\rm{d}}(I,(P)) = \frac{{\left| {5 + m( - 3 - 8) + n(7 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 6\sqrt 2 \]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow \left| {5 - 11m + 5n} \right| = 6\sqrt 2 .\sqrt {1 + {m^2} + {n^2}} }\\{ \Leftrightarrow 25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn = 72(1 + {m^2} + {n^2})}\\{ \Leftrightarrow 49{m^2} - 110m + 50n - 110mn - 47{n^2} - 47 = 0}\\{ \Leftrightarrow 49{m^2} - 110m(n + 1) - 47{n^2} + 50n - 47 = 0(1)}\\{{\rm{\Delta '}} = 3025{{(n + 1)}^2} - 49( - 47{n^2} + 50n - 47) = 5328{n^2} + 3600n + 5328 > 0}\end{array}\]

Phương trình (*) luôn có  nghiệm

\[\begin{array}{*{20}{l}}{{\rm{d}}(B,(P)) = \frac{{\left| {1 + m(1 - 8) + n( - 9 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }}}\\{ = > d(B,(P))\max = AB \Leftrightarrow \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 3\sqrt {19} \Leftrightarrow \sqrt {1 + {m^2} + {n^2}} = \frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }}}\end{array}\]

Mặt khác\[\frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }} = \sqrt {1 + {m^2} + {n^2}} \]

\[\frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }}\]

\[\begin{array}{*{20}{l}}{72(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 171(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow 8(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 19(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow - 1907{m^2} + 493{n^2} + 1978m - 1126n + 3322mn - 467 = 0(2)}\end{array}\]Từ (1) và (2)\[ \Rightarrow m.n = \frac{{276}}{{49}}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về mặt phẳng và mặt cầu !!

Số câu hỏi: 21

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK