Trang chủ Đề thi & kiểm tra Khác Cấp số nhân !! Dãy số nào trong các dãy số sau không phải...

Dãy số nào trong các dãy số sau không phải là cấp số nhân:

Câu hỏi :

Dãy số nào trong các dãy số sau không phải là cấp số nhân:

A.\[{u_n} = {5^n}\]

B. \[{u_n} = {\left( {2 - \sqrt 3 } \right)^{n + 1}}\]

C. \[{u_n} = 5n + 1\]

D. \[{u_n} = {4^n}\]

* Đáp án

* Hướng dẫn giải

Ta có\[{u_n} = {5^n}\] nên\[{u_{n + 1}} = {5^{n + 1}} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\]  không đổi\[\forall n \ge 1\]

Vậy dãy số\[\left( {{u_n}} \right)\] có \[{u_n} = {5^n}\] là cấp số nhân.

Tương tự ta cũng có dãy số ở đáp án D là cấp số nhân.

Ta có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\] nên\[{u_{n + 1}} = 2{( - \sqrt 3 )^{n + 2}} = ( - \sqrt 3 ){u_n} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = ( - \sqrt 3 )\] không đổi\[\forall n \ge 1\]

Vậy dãy số \[\left( {{u_n}} \right)\] có\[{u_n} = 2{( - \sqrt 3 )^{n + 1}}\]  là cấp số nhân.

Ta có \[{u_n} = 5n + 1\] nên\[{u_1} = 8;{u_2} = 13;{u_3} = 18 \Rightarrow \frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\]Vậy dãy số \[\left( {{u_n}} \right)\]không là cấp số nhân.

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cấp số nhân !!

Số câu hỏi: 30

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK