Cho hai số phức z1 = x1 + y1, z2 = x2 + y2

Câu hỏi :

Cho hai số phức z1=x1+y1z2=x2+y2 x1,x2,y1,y2 thỏa mãn z1iz1+23i=1;z2+iz21+i=2. Khi z1z2 đạt giá trị nhỏ nhất thì x1+x2+y1+y2 có giá trị bằng

A. 0

B. 2

C. 4

D. 22

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Điều kiện z12+3i; z21i

Ta có 

z1iz1+23i=1z1i=z1+23ix1+y11i=x1+2+y13i

x12+y112=x1+22+y132x1y1+3=0

Quỹ tích điểm M biểu diễn số phức z1 thuộc đường thẳng :xy+3=0

Ta có 

z2+iz21+i=2z2+i=2z21+ix2+y2+1i=2x21+y2+1ix22+y2+12=2x212+y2+12x224x2+2y2+3=0

Quỹ tích điểm N biểu diễn số phức z2 là đường tròn C:x2+y24x+2y+3=0 có tâm I2;1 và bán kính R=22+123=2.

Khoảng cách từ I đến Δ là dI;Δ=21+312+12=32>R Đường thẳng  và đường tròn C không có điểm chung.

Ta có: z1z2=MN, suy ra z1z2 nhỏ nhất khi và chỉ khi MN nhỏ nhất.

Dễ thấy minMN=322=22 khi M1;2, N1;0,

Vậy z1z2 nhỏ nhất bằng 22 khi z1=1+2i; z2=1

Khi đó x1+x2+y1+y2=1+2+1=2

Cho hai số phức z1 = x1 + y1, z2 = x2 + y2 (ảnh 1)

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK