A. \(a = \frac{1}{5}\)
B. \(a = \frac{2}{5}\)
C. \(a = \frac{3}{5}\)
D. \(a = \frac{4}{5}\)
A. \(I = - \frac{{15a}}{{16}} + \ln 2\)
B. \(I = \frac{{15a}}{{16}} - \ln 2\)
C. \(I = \frac{{15a}}{{16}} + \ln 2\)
D. \(I = - \frac{{15a}}{{16}} - \ln 2\)
A. a = 5
B. a = 6
C. a = 7
D. a = 8
A. \(I = 2\ln 2 - \frac{5}{4}\)
B. \(I = 2\ln 2 + \frac{3}{4}\)
C. \(I = 2\ln 2 + \frac{5}{4}\)
D. \(I = 2\ln 2 - \frac{3}{4}\)
A. \(I = \frac{{{a^2}\ln a}}{2} + \frac{{1 - {a^2}}}{4}\)
B. \(I = \frac{{{a^2}\ln a}}{2} - \frac{{1 - {a^2}}}{4}\)
C. \(I = \frac{{{a^2}\ln \left| a \right|}}{2} + \frac{{1 - {a^2}}}{4}\)
D. \(I = \frac{{{a^2}\ln \left| a \right|}}{2} - \frac{{1 - {a^2}}}{4}\)
A. \(I = \frac{{\pi + 6 - 3\sqrt[{}]{3}}}{{6a}}\)
B. \(I = \frac{{\pi + 3 - 3\sqrt[{}]{3}}}{{6a}}\)
C. \(I = \frac{{\pi + 6 + 3\sqrt[{}]{3}}}{{6a}}\)
D. \(I = \frac{{\pi + 3 + 3\sqrt[{}]{3}}}{{6a}}\)
A. \(I = \ln 2 - \frac{1}{2}\)
B. \(I = 2\ln 2 - \frac{1}{2}\)
C. \(I = 2\ln 2 - 1\)
D. \(I = \ln 2 - 1\)
A. \(I = \frac{{{e^2} + 1}}{4}\)
B. \(I = \frac{{{e^2} + 3}}{4}\)
C. \(I = \frac{{{e^2} + 5}}{4}\)
D. \(I = \frac{{{e^2} + 7}}{4}\)
A. \(I = \frac{{4\sqrt 2 + 3}}{3}\)
B. \(I = \frac{{4\sqrt 2 + 1}}{3}\)
C. \(I = \frac{{4\sqrt 2 + 5}}{3}\)
D. \(I = \frac{{4\sqrt 2 - 3}}{3}\)
A. \(I = \frac{{5{\pi ^4}}}{{324}} + \frac{{2{\pi ^2}}}{9} + \frac{\pi }{4} - \frac{{\sqrt 3 }}{2}\)
B. \(I = \frac{{5{\pi ^4}}}{{324}} - \frac{{2{\pi ^2}}}{9} + \frac{\pi }{4} - \frac{{\sqrt 3 }}{2}\)
C. \(I = \frac{{5{\pi ^4}}}{{324}} + \frac{{2{\pi ^2}}}{9} - \frac{\pi }{4} - \frac{{\sqrt 3 }}{2}\)
D. \(I = \frac{{5{\pi ^4}}}{{324}} + \frac{{2{\pi ^2}}}{9} + \frac{\pi }{4} + \frac{{\sqrt 3 }}{2}\)
A. \(I = \ln \left| {\frac{{{e^{\frac{\pi }{3}}}\left( {{e^{\frac{\pi }{3}}} + 2} \right)}}{{{e^{\frac{{2\pi }}{3}}} - 2}}} \right|\)
B. \(I = \ln \left| {\frac{{{e^{\frac{\pi }{3}}}\left( {{e^{\frac{\pi }{3}}} - 2} \right)}}{{{e^{\frac{{2\pi }}{3}}} - 2}}} \right|\)
C. \(I = \ln \left| {\frac{{{e^{\frac{\pi }{3}}}\left( {{e^{\frac{\pi }{3}}} + 2} \right)}}{{{e^{\frac{{2\pi }}{3}}} + 2}}} \right|\)
D. \(I = \ln \left| {\frac{{{e^{\frac{\pi }{3}}}\left( {{e^{\frac{\pi }{3}}} - 2} \right)}}{{{e^{\frac{{2\pi }}{3}}} + 2}}} \right|\)
A. I = -2e
B. I = -e
C. I = e
D. I = 2e
A. \(I = \sqrt 2 - 1 + \ln \left( {\sqrt 2 - 1} \right)\)
B. \(I = \sqrt 2 - 1 - \ln \left( {\sqrt 2 - 1} \right)\)
C. \(I = - \sqrt 2 + 1 + \ln \left( {\sqrt 2 - 1} \right)\)
D. \(I = - \sqrt 2 + 1 - \ln \left( {\sqrt 2 - 1} \right)\)
A. \(I = \frac{\pi }{4}\tan \frac{\pi }{8} - 2\ln \left( {\cos \frac{\pi }{8}} \right)\)
B. \(I = \frac{\pi }{4}\tan \frac{\pi }{8} + 2\ln \left( {\cos \frac{\pi }{8}} \right)\)
C. \(I = \frac{\pi }{4}\tan \frac{\pi }{4} - 2\ln \left( {\cos \frac{\pi }{8}} \right)\)
D. \(I = \frac{\pi }{4}\tan \frac{\pi }{4} + 2\ln \left( {\cos \frac{\pi }{8}} \right)\)
A. \(I = \frac{1}{2}\left( { - \pi + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2 + \ln 2} \right)\)
B. \(I = \frac{1}{2}\left( { - \pi + \frac{{2\pi \sqrt 3 }}{3} + 2\ln \sqrt 2 - \ln 2} \right)\)
C. \(I = \frac{1}{2}\left( { - \pi + \frac{{2\pi \sqrt 3 }}{3} + 4\ln \sqrt 2 - \ln 2} \right)\)
D. \(I = \frac{1}{2}\left( { - \pi + \frac{{2\pi \sqrt 3 }}{3} + 2\ln \sqrt 2 + \ln 2} \right)\)
A. \(a = - \frac{\pi }{2}\)
B. \(a = - \frac{\pi }{4}\)
C. \(a = \frac{\pi }{3}\)
D. \(a = \frac{\pi }{6}\)
A. \(I = \frac{\pi }{{12}} + \ln \left( {\sqrt 3 + 1} \right)\)
B. \(I = \frac{\pi }{{12}} + \ln \frac{{\sqrt 3 + 1}}{4}\)
C. \(I = \frac{\pi }{{12}} - \frac{{\ln \left( {\frac{{\sqrt 3 + 1}}{2}} \right)}}{2}\)
D. \(I = \frac{\pi }{{12}} + \ln \frac{{\sqrt 3 + 1}}{2}\)
A. \(I = \frac{1}{{2\sqrt 2 }}\left( {\ln \frac{{\sqrt 2 - 2}}{{\sqrt 2 + 2}} + \ln \frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \right)\)
B. \(I = \frac{1}{{2\sqrt 2 }}\left( {\ln \frac{{\sqrt 2 - 2}}{{\sqrt 2 + 2}} - \ln \frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}}} \right)\)
C. \(I = \frac{1}{{2\sqrt 2 }}\left( {\ln \frac{{\sqrt 2 - 2}}{{\sqrt 2 + 2}} - \ln \frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \right)\)
D. \(I = \frac{1}{{2\sqrt 2 }}\left( {\ln \frac{{\sqrt 2 + 2}}{{\sqrt 2 - 2}} - \ln \frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \right)\)
A. \(I = \ln \left( {\frac{{{\pi ^2}}}{4} - 1} \right) - \ln \left( {\frac{{{\pi ^2}}}{{16}} + \frac{{\sqrt 2 }}{2}} \right)\)
B. \(I = \ln \left( {\frac{{{\pi ^2}}}{4} + 1} \right) - \ln \left( {\frac{{{\pi ^2}}}{{16}} + \frac{{\sqrt 2 }}{2}} \right)\)
C. \(I = \ln \left( {\frac{{{\pi ^2}}}{4} - 1} \right) + \ln \left( {\frac{{{\pi ^2}}}{{16}} + \frac{{\sqrt 2 }}{2}} \right)\)
D. \(I = \ln \left( {\frac{{{\pi ^2}}}{4} + 1} \right) + \ln \left( {\frac{{{\pi ^2}}}{{16}} + \frac{{\sqrt 2 }}{2}} \right)\)
A. a = 1
B. a = 2
C. a = 3
D. a = 4
A. \({I_2} = \frac{{17}}{3}\)
B. \({I_2} = \frac{{19}}{3}\)
C. \({I_2} = \frac{{16}}{3}\)
D. \({I_2} = \frac{{13}}{3}\)
A. -2
B. -4
C. 2
D. 4
A. -1
B. -2
C. -3
D. -4
A. -1
B. 1
C. -2
D. 2
A. -1
B. -2
C. 1
D. 2
A. \(\frac{1}{4}\)
B. \(\frac{1}{2}\)
C. \(\frac{1}{6}\)
D. \(\frac{1}{3}\)
A. \(I = \int\limits_a^b {\left( {{x^2} + 1} \right)dx} = \int\limits_a^b {{x^2}dx + \int\limits_a^b {dx} } \)
B. \(I = \left. {\left( {{x^3} + x} \right)} \right|_a^b\)
C. \(I = \frac{1}{3}{b^3} + b - \frac{1}{3}{a^3} - a\)
D. Chỉ có A và C đúng.
A. 1
B. 2
C. 3
D. 4
A. 1
B. 2
C. 3
D. 4
A. 4
B. 3
C. 2
D. 1
A. \(\frac{9}{2}\)
B. \(\frac{7}{2}\)
C. \(\frac{5}{2}\)
D. \(\frac{3}{2}\)
A. \(\frac{2}{3}\)
B. \(\frac{4}{3}\)
C. \(\frac{8}{3}\)
D. 2
A. \(\frac{{27}}{2}\)
B. \(\frac{{21}}{2}\)
C. \(\frac{{23}}{2}\)
D. \(\frac{{25}}{2}\)
A. 2
B. 4
C. 6
D. 8
A. \(\frac{{11}}{3}\)
B. \(\frac{{13}}{3}\)
C. \(\frac{{14}}{3}\)
D. \(\frac{{17}}{3}\)
A. \(\frac{{21}}{4}\)
B. \(\frac{{23}}{4}\)
C. \(\frac{{25}}{4}\)
D. \(\frac{{27}}{4}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK