Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Bài 6. Cung chứa góc Giải bài 51 trang 87 - Sách giáo khoa Toán 9 tập 2

Giải bài 51 trang 87 - Sách giáo khoa Toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

    Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với A = 60o. Gọi H là giao điểm của các đường cao BB'và CC'.

Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.

Hướng dẫn giải

   \(\Delta ABC \ có \ \widehat{A}= 60^0 \Rightarrow \widehat{B}+\widehat{C}= 120^0\)

  Xét \(\Delta BIC \) ta có:

  \( \widehat{BIC}= 180^0 - \dfrac{\widehat{B}+\widehat{C}}{2} = 180^0 - 60^0 = 120^0\ \widehat{BHC}= \widehat{B'HC'}= 180^0 - \widehat{A}= 120^0 \\ \Rightarrow \widehat{BOC}= 2 \widehat{A}= 2.60^0 = 120^0 ( góc \ nội \ tiếp \ và \ góc \ ở \ tâm \ cùng \ chắn \ một \ cung)\)

  Vậy \( \widehat{BIC}= \widehat{BHC}= \widehat{BOC}= 120^0 \)

   Suy ra các điểm \(I,H,O\) nằm trên cung chứa góc 120 dựng trên đoạn thẳng BC.

   Do đó 5 điểm \(I,H,O,B,C\) cùng thuộc một đường tròn.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK