Cho tam giác đều ABC cạnh a. Tam giác

Câu hỏi :

Cho tam giác đều ABC cạnh a. Tam giác \[{A_1}{B_1}{C_1}\] có đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \[{A_2}{B_2}{C_2}\] có các đỉnh là trung điểm các cạnh của tam giác \[{A_1}{B_1}{C_1}\],…, tam giác AnBnCnAnBnCn có các đỉnh là trung điểm các cạnh của tam giác \[{A_{n - 1}}{B_{n - 1}}{C_{n - 1}} \ldots .{\rm{ }}Goi\;P,{P_1},{P_2},...,{P_n},...\] là chu vi của các tam giác \[ABC,{A_1}{B_1}{C_1},{A_2}{B_2}{C_2},...,{A_n}{B_n}{C_n},...\] Tìm tổng \[P,{P_1},{P_2},...,{P_n},...\]

A.9a

B.6a

C.\[ + \infty \]

D.3a

* Đáp án

* Hướng dẫn giải

Bước 1:

Gọi \[{a_n}\] là cạnh của tam giác \[{A_n}{B_n}{C_n}\] với n nguyên dương.

Ta cần chứng minh cạnh của tam giác bất kì \[{A_n}{B_n}{C_n}\] bằng\[{a_n} = \frac{a}{{{2^n}}}\] ới mọi số nguyên dương n   (*)

Vì\[{A_1},{B_1},{C_1}\] là trung điểm các cạnh của tam giác ABC nên \[{a_1} = \frac{a}{2}\]

Cạnh của tam giác\[{A_1}{B_1}{C_1}\] có cạnh là\[\frac{a}{2} = \frac{a}{{{2^1}}}\]

Giả sử (*) đúng với \[n = k\]

Tức là cạnh của tam giác\[{A_k}{B_k}{C_k}\]  là\[{a_k} = \frac{a}{{{2^k}}}\]

Ta có\[{A_{k + 1}}{B_{k + 1}}{C_{k + 1}}\] có cạnh bằng một nửa cạnh của tam giác\[{A_k}{B_k}{C_k}\] nên có cạnh là\[{a_{k + 1}} = \frac{{{a_k}}}{2} = \frac{1}{2}.\frac{a}{{{2^k}}} = \frac{a}{{{2^{k + 1}}}}\]

=>(*) đúng với \[n = k + 1\]

=>(*) đúng với mọi số nguyên dương n.

=>Chu vi của tam giác\[{A_n}{B_n}{C_n}\] như giả thiết là\[{P_n} = \frac{{3a}}{{{2^n}}}\]

Bước 2:

Như vậy\[P = 3a;{P_1} = \frac{{3a}}{2};{P_2} = \frac{{3a}}{{{2^2}}};...;{P_n} = \frac{{3a}}{{{2^n}}};...\]

Dãy số\[\left( {{P_n}} \right)\]  gồm\[P,{P_1},{P_2},...\] là cấp số nhân với số hạng đầu là\[P = 3a\] công bội\[q = \frac{1}{2}\]

\[ \Rightarrow P + {P_1} + {P_2} + ... = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giới hạn của dãy số !!

Số câu hỏi: 80

Bạn có biết?

Học thuộc bài trước khi ngủ. Các nhà khoa học đã chứng minh đây là phương pháp học rất hiệu quả. Mỗi ngày trước khi ngủ, bạn hãy ôn lại bài đã học một lần sau đó, nhắm mắt lại và đọc nhẩm lại một lần. Điều đó sẽ khiến cho bộ não của bạn tiếp thu và ghi nhớ tất cả những thông tin một cách lâu nhất.

Nguồn : timviec365.vn

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK