A. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{2}\sin 2x + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = - \frac{1}{2}\sin 2x + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = 2\sin 2x + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = - 2\sin 2x + C\)
A. \(\int {\cos 3x{\rm{d}}x = 3\sin 3x + C} \)
B. \(\int {\cos 3x{\rm{d}}x = \frac{{\sin 3x}}{3} + C} \)
C. \(\int {\cos 3x{\rm{d}}x = - \frac{{\sin 3x}}{3} + C} \)
D. \(\int {\cos 3x{\rm{d}}x = \sin 3x + C} \)
A. \(\int {\frac{{{\rm{d}}x}}{{5x - 2}} = \frac{1}{5}\ln \left| {5x - 2} \right| + C} \)
B. \(\int {\frac{{{\rm{d}}x}}{{5x - 2}} = - \frac{1}{2}\ln \left( {5x - 2} \right) + C} \)
C. \(\int {\frac{{{\rm{d}}x}}{{5x - 2}} = 5\ln \left| {5x - 2} \right| + C} \)
D. \(\int {\frac{{{\rm{d}}x}}{{5x - 2}} = \ln \left| {5x - 2} \right| + C} \)
A. \(\int {{7^x}{\rm{d}}x} = {7^x}\ln 7 + C.\)
B. \(\int {{7^x}{\rm{d}}x} = \frac{{{7^x}}}{{\ln 7}} + C.\)
C. \(\int {{7^x}{\rm{d}}x} = {7^{x + 1}} + C.\)
D. \(\int {{7^x}{\rm{d}}x} = \frac{{{7^{x + 1}}}}{{x + 1}} + C.\)
A. \(V = \pi \int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} \)
B. \(V = \int\limits_a^b {{f^2}\left( x \right){\rm{d}}x} \)
C. \(V = \pi \int\limits_a^b {f\left( x \right){\rm{d}}x} \)
D. \(V = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \)
A. I = 1
B. I = - 1
C. I = 3
D. \(I = \frac{7}{2}\)
A. \(I = \frac{5}{2}\)
B. \(I = \frac{7}{2}\)
C. \(I = \frac{{17}}{2}\)
D. \(I = \frac{{11}}{2}\)
A. I = 7
B. \(I = 5 + \frac{\pi }{2}\)
C. I = 3
D. \(I = 5 + \pi \)
A. \(\int {f\left( x \right){\rm{d}}x} = \frac{2}{3}\left( {2x - 1} \right)\sqrt {2x - 1} + C\)
B. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{3}\left( {2x - 1} \right)\sqrt {2x - 1} + C\)
C. \(\int {f\left( x \right){\rm{d}}x} = - \frac{1}{3}\sqrt {2x - 1} + C\)
D. \(\int {f\left( x \right){\rm{d}}x} = \frac{1}{2}\sqrt {2x - 1} + C\)
A. \(F\left( x \right) = {{\rm{e}}^x} + {x^2} + \frac{3}{2}.\)
B. \(F\left( x \right) = 2{{\rm{e}}^x} + {x^2} - \frac{1}{2}.\)
C. \(F\left( x \right) = {{\rm{e}}^x} + {x^2} + \frac{5}{2}.\)
D. \(F\left( x \right) = {{\rm{e}}^x} + {x^2} + \frac{1}{2}.\)
A. \(F\left( x \right) = \cos x - \sin x + 3\)
B. \(F\left( x \right) = - \cos x + \sin x + 3\)
C. \(F\left( x \right) = - \cos x + \sin x - 1\)
D. \(F\left( x \right) = - \cos x + \sin x + 1\)
A. \(\int {f'\left( x \right)\ln x{\rm{d}}x = - \left( {\frac{{\ln x}}{{{x^2}}} + \frac{1}{{2{x^2}}}} \right)} + C\)
B. \(\int {f'\left( x \right)\ln x{\rm{d}}x = \frac{{\ln x}}{{{x^2}}} + \frac{1}{{{x^2}}}} + C\)
C. \(\int {f'\left( x \right)\ln x{\rm{d}}x = - \left( {\frac{{\ln x}}{{{x^2}}} + \frac{1}{{{x^2}}}} \right)} + C\)
D. \(\int {f'\left( x \right)\ln x{\rm{d}}x = \frac{{\ln x}}{{{x^2}}} + \frac{1}{{2{x^2}}}} + C\)
A. \(I = \frac{1}{2}\)
B. \(I = \frac{{{{\rm{e}}^2} - 2}}{2}\)
C. \(I = \frac{{{{\rm{e}}^2} + 1}}{4}\)
D. \(I = \frac{{{{\rm{e}}^2} - 1}}{4}\)
A. \(\frac{{37}}{{12}}\)
B. \(\frac{9}{4}\)
C. \(\frac{{81}}{{12}}\)
D. 13
A. \(V = 4 - 2{\rm{e}}\)
B. \(V = \left( {4 - 2{\rm{e}}} \right)\pi \)
C. \(V = {{\rm{e}}^2} - 5\)
D. \(V = \left( {{{\rm{e}}^2} - 5} \right)\pi \)
A. S = b - a
B. S = b + a
C. S = - b + a
D. S = - b - a
A. \(I = 2\int\limits_0^2 {\sqrt u {\rm{d}}u.} \)
B. \(I = \int\limits_0^2 {\sqrt u {\rm{d}}u.} \)
C. \(I = \int\limits_0^3 {\sqrt u {\rm{d}}u.} \)
D. \(I = \frac{1}{2}\int\limits_1^2 {\sqrt u {\rm{d}}u.} \)
A. S = 2
B. S = - 2
C. S = 0
D. S = 1
A. \(V = 32 + 2\sqrt {15} \)
B. \(V = \frac{{124\pi }}{3}\)
C. \(V = \frac{{124}}{3}\)
D. \(V = \left( {32 + 2\sqrt {15} } \right)\pi \)
A. \(V = \pi - 1\)
B. \(V = \left( {\pi - 1} \right)\pi \)
C. \(V = \left( {\pi +1} \right)\pi \)
D. \(V = \pi + 1\)
A. I = 6
B. I = 36
C. I = 2
D. I = 4
A. I = e
B. \(I = \frac{1}{{\rm{e}}}\)
C. \(I = \frac{1}{{\rm{2}}}\)
D. I = 1
A. a + b = 2
B. a - 2b = 0
C. a + b = - 2
D. a + 2b = 0
A. \(V = \frac{{\pi {{\rm{e}}^2}}}{2}\)
B. \(V = \frac{{\pi \left( {{{\rm{e}}^2} + 1} \right)}}{2}\)
C. \(V = \frac{{{{\rm{e}}^2} - 1}}{2}\)
D. \(V = \frac{{\pi \left( {{{\rm{e}}^2} - 1} \right)}}{2}\)
A. \(V = \frac{{4\pi }}{3}\)
B. \(V = 2\pi \)
C. \(V = \frac{4}{3}\)
D. V = 2
A. 0,2m
B. 2m
C. 10m
D. 20m
A. \(I = - \frac{1}{4}{\pi ^4}\)
B. \(I = - {\pi ^4}\)
C. I = 0
D. \(I = - \frac{1}{4}\)
A. \(F\left( 3 \right) = \ln 2 - 1\)
B. \(F\left( 3 \right) = \ln 2 + 1\)
C. \(F\left( 3 \right) = \frac{1}{2}\)
D. \(F\left( 3 \right) = \frac{7}{4}\)
A. I = 32
B. I = 8
C. I = 16
D. I = 4
A. S = 6
B. S = 2
C. S = - 2
D. S = 0
A. I = - 12
B. I = 8
C. I = 1
D. I = - 8
A. \(f\left( x \right) = 3x + 5\cos x + 5\)
B. \(f\left( x \right) = 3x + 5\cos x + 2\)
C. \(f\left( x \right) = 3x - 5\cos x + 2\)
D. \(f\left( x \right) = 3x - 5\cos x + 15\)
A. \(\int {f'\left( x \right){{\rm{e}}^{2x}}} {\rm{d}}x = (4 - 2x){e^x} + C\)
B. \(\int {f'\left( x \right){{\rm{e}}^{2x}}} {\rm{d}}x = \frac{{2 - x}}{2}{{\rm{e}}^x} + C\)
C. \(\int {f'\left( x \right){{\rm{e}}^{2x}}} {\rm{d}}x = \left( {2 - x} \right){{\rm{e}}^x} + C\)
D. \(\int {f'\left( x \right){{\rm{e}}^{2x}}} {\rm{d}}x = \left( {x - 2} \right){{\rm{e}}^x} + C\)
A. \(\int {f'\left( x \right)\ln x{\rm{d}}x = \frac{{\ln x}}{{{x^3}}} + \frac{1}{{5{x^5}}} + C} \)
B. \(\int {f'\left( x \right)\ln x{\rm{d}}x = \frac{{\ln x}}{{{x^3}}} - \frac{1}{{5{x^5}}} + C} \)
C. \(\int {f'\left( x \right)\ln x{\rm{d}}x = \frac{{\ln x}}{{{x^3}}} + \frac{1}{{3{x^3}}} + C} \)
D. \(\int {f'\left( x \right)\ln x{\rm{d}}x = - \frac{{\ln x}}{{{x^3}}} + \frac{1}{{3{x^3}}} + C} \)
A. I = - 6
B. I = 0
C. I = - 2
D. I = 6
A. \(g\left( 3 \right) < g\left( { - 3} \right) < g\left( 1 \right)\)
B. \(g\left( 1 \right) < g\left( 3 \right) < g\left( { - 3} \right)\)
C. \(g\left( 1 \right) < g\left( { - 3} \right) < g\left( 3 \right)\)
D. \(g\left( { - 3} \right) < g\left( 3 \right) < g\left( 1 \right)\)
A. \(\frac{{16}}{{225}}\)
B. \(\log \frac{5}{3}\)
C. \(\ln \frac{5}{3}\)
D. \(\frac{2}{{15}}\)
A. \(\frac{{4\pi + \sqrt 3 }}{{12}}\)
B. \(\frac{{4\pi - \sqrt 3 }}{6}\)
C. \(\frac{{4\pi + 2\sqrt 3 - 3}}{6}\)
D. \(\frac{{5\sqrt 3 - 2\pi }}{3}\)
A. P = 24
B. P = 12
C. P = 18
D. P = 46
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK