Trang chủ Đề thi & kiểm tra Lớp 10 Toán học 40 câu trắc nghiệm chuyên đề Bất phương trình và hệ bất phương trình Đại số 10

40 câu trắc nghiệm chuyên đề Bất phương trình và hệ bất phương trình Đại số 10

Câu hỏi 1 :

Tập nghiệm S của bất phương trình \(5x - 1 \ge \frac{{2x}}{5} + 3\) là:

A. S = R

B. \(S = \left( { - \infty ;2} \right).\)

C. \(S = \left( { - \frac{5}{2}; + \infty } \right).\)

D. \(S = \left[ {\frac{{20}}{{23}}; + \infty } \right).\)

Câu hỏi 3 :

Tập nghiệm S của bất phương trình \(\left( {1 - \sqrt 2 } \right)x < 3 - 2\sqrt 2 \) là:

A. \(S = \left( { - \infty ;1 - \sqrt 2 } \right).\)

B. \(S = \left( {1 - \sqrt 2 ; + \infty } \right).\)

C. S = R

D. \(S = \emptyset .\)

Câu hỏi 4 :

Bất phương trình \(\left( {2x - 1} \right)\left( {x + 3} \right) - 3x + 1 \le \left( {x - 1} \right)\left( {x + 3} \right) + {x^2} - 5\) có tập nghiệm

A. \(S = \left( { - \infty ; - \frac{2}{3}} \right).\)

B. \(S = \left[ { - \frac{2}{3}; + \infty } \right).\)

C. S = R

D. S = Ø

Câu hỏi 6 :

Tập nghiệm S của bất phương trình \({\left( {x + \sqrt 3 } \right)^2} \ge {\left( {x - \sqrt 3 } \right)^2} + 2\) là:

A. \(S = \left[ {\frac{{\sqrt 3 }}{6}; + \infty } \right).\)

B. \(S = \left( {\frac{{\sqrt 3 }}{6}; + \infty } \right).\)

C. \(S = \left( { - \infty ;\frac{{\sqrt 3 }}{6}} \right].\)

D. \(S = \left( { - \infty ;\frac{{\sqrt 3 }}{6}} \right).\)

Câu hỏi 7 :

Tập nghiệm S của bất phương trình \(5\left( {x + 1} \right) - x\left( {7{\rm{ }} - {\rm{ }}x} \right) >  - 2x\) là:

A. S = R

B. \(S = \left( { - \frac{5}{2}; + \infty } \right).\)

C. \(S = \left( { - \infty ;\frac{5}{2}} \right).\)

D. \(S = \emptyset .\)

Câu hỏi 8 :

Tập nghiệm S của bất phương trình \({\left( {x - 1} \right)^2} + {\left( {x - 3} \right)^2} + 15 < {x^2} + {\left( {x - 4} \right)^2}\) là:

A. \(S = \left( { - \infty ;0} \right).\)

B. \(S = \left( {0; + \infty } \right).\)

C. S = R

D. \(S = \emptyset .\)

Câu hỏi 9 :

Tập nghiệm S của bất phương trình \(x + \sqrt x  < \left( {2\sqrt x  + 3} \right)\left( {\sqrt x  - 1} \right)\) là:

A. \(S = \left( { - \infty ;3} \right).\)

B. \(S = \left( {3; + \infty } \right).\)

C. \(S = \left[ {3; + \infty } \right).\)

D. \(S = \left( { - \infty ;3} \right].\)

Câu hỏi 10 :

Tập nghiệm S của bất phương trình \(x + \sqrt {x - 2}  \le 2 + \sqrt {x - 2} \) là:

A. \(S = \left( { - \infty ;2} \right)\)

B. \(S = \left( { - \infty ;2} \right].\)

C. \(S = \left\{ 2 \right\}.\)

D. \(S = \left[ {2; + \infty } \right).\)

Câu hỏi 12 :

Tập nghiệm S của bất phương trình \(\left( {x - 3} \right)\sqrt {x - 2}  \ge 0\) là: 

A. \(S = \left[ {3; + \infty } \right)\)

B. \(S = \left( {3; + \infty } \right)\)

C. \(S = \left\{ 2 \right\} \cup \left[ {3; + \infty } \right)\)

D. \(S = \left\{ 2 \right\} \cup \left( {3; + \infty } \right)\)

Câu hỏi 13 :

Bất phương trình \(\left( {m - 1} \right)x > 3\) vô nghiệm khi

A. \(m \ne 1.\)

B. m < 1

C. m = 1

D. m > 1

Câu hỏi 14 :

Bất phương trình \(\left( {{m^2} - 3m} \right)x + m < 2 - 2x\) vô nghiệm khi

A. \(m \ne 1.\)

B. \(m \ne 2.\)

C. \(m = 1,m = 2.\)

D. \(m \in R.\)

Câu hỏi 20 :

Bất phương trình \({m^2}\left( {x - 1} \right) \ge 9x + 3m\) nghiệm đúng với mọi x khi

A. m = 1

B. m = - 3

C. \(m \in \emptyset \)

D. m = - 1

Câu hỏi 25 :

Gọi S là tập nghiệm của bất phương trình \(mx + 6 < 2x + 3m\) với m < 2. Hỏi tập hợp nào sau đây là phần bù của tập S?

A. \(\left( {3; + \infty } \right)\)

B. \(\left[ {3; + \infty } \right)\)

C. \(\left( { - \infty ;3} \right)\)

D. \(\left( { - \infty ;3} \right]\)

Câu hỏi 28 :

Tìm tất cả các giá trị của tham số m để bất phương trình \(mx + 4 > 0\) nghiệm đúng với mọi \(\left| x \right| < 8\).

A. \(m \in \left[ { - \frac{1}{2};\frac{1}{2}} \right].\)

B. \(m \in \left( { - \infty ;\frac{1}{2}} \right].\)

C. \(m \in \left[ { - \frac{1}{2}; + \infty } \right).\)

D. \(m \in \left[ { - \frac{1}{2};0} \right) \cup \left( {0;\frac{1}{2}} \right].\)

Câu hỏi 31 :

Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l}
2 - x > 0\\
2x + 1 < x - 2
\end{array} \right.\) là:

A. \(S = \left( { - \infty ; - 3} \right).\)

B. \(S = \left( { - \infty ; 2} \right).\)

C. \(S = \left( { - 3;2} \right).\)

D. \(S = \left( { - 3; + \infty } \right).\)

Câu hỏi 32 :

Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l}
\frac{{2x - 1}}{3} <  - x + 1\\
\frac{{4 - 3x}}{2} < 3 - x
\end{array} \right.\) là:

A. \(S = \left( { - 2;\frac{4}{5}} \right).\)

B. \(S = \left( {\frac{4}{5}; + \infty } \right).\)

C. \(S = \left( { - \infty ; - 2} \right).\)

D. \(S = \left( { - 2; + \infty } \right).\)

Câu hỏi 33 :

Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l}
\frac{{x - 1}}{2} <  - x + 1\\
3 + x > \frac{{5 - 2x}}{2}
\end{array} \right.\) là:

A. \(S = \left( { - \infty ; - \frac{1}{4}} \right).\)

B. \(S = \left( {1; + \infty } \right).\)

C. \(S = \left( { - \frac{1}{4};1} \right).\)

D. \(S = \emptyset .\)

Câu hỏi 34 :

Tập nghiệm S của hệ bất phương trình \(\left\{ \begin{array}{l}
2x - 1 <  - x + 2017\\
3 + x > \frac{{2018 - 2x}}{2}
\end{array} \right.\) là:

A. \(S = \emptyset .\)

B. \(S = \left( {\frac{{2012}}{8};\frac{{2018}}{3}} \right).\)

C. \(S = \left( { - \infty ;\frac{{2012}}{8}} \right).\)

D. \(S = \left( {\frac{{2018}}{3}; + \infty } \right).\)

Câu hỏi 35 :

Tập \(S = \left[ { - 1;\frac{3}{2}} \right)\) là tập nghiệm của hệ bất phương trình sau đây ?

A. \(\left\{ \begin{array}{l}
2(x - 1) < 1\\
x \ge  - 1
\end{array} \right..\)

B. \(\left\{ \begin{array}{l}
2(x - 1) > 1\\
x \ge  - 1
\end{array} \right..\)

C. \(\left\{ \begin{array}{l}
2(x - 1) < 1\\
x \le  - 1
\end{array} \right..\)

D. \(\left\{ \begin{array}{l}
2(x - 1) < 1\\
x \le  - 1
\end{array} \right..\)

Câu hỏi 36 :

Tập nghiệm S của bất phương trình \(\left\{ \begin{array}{l}
2\left( {x - 1} \right) < x + 3\\
2x \le 3\left( {x + 1} \right)
\end{array} \right.\) là:

A. \(S = \left( { - 3;5} \right).\)

B. \(S = \left( { - 3;5} \right].\)

C. \(S = \left[ { - 3;5} \right).\)

D. \(S = \left[ { - 3;5} \right].\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK