A. ac > bd
B. a - c > b - d
C. a + c > b + d
D. \(\frac{a}{c} > \frac{b}{d}\)
A. a = b
B. \(ab \le 0\)
C. \(ab \ge 0\)
D. ab = 0
A. \( - \frac{9}{4}\)
B. \( - \frac{3}{2}\)
C. 0
D. \( \frac{3}{2}\)
A. \(f(x)\) có giá trị nhỏ nhất là 0, giá trị lớn nhất bằng 1.
B. \(f(x)\) không có giá trị nhỏ nhất, giá trị lớn nhất bằng 1.
C. \(f(x)\) có giá trị nhỏ nhất là 1, giá trị lớn nhất bằng 2.
D. \(f(x)\) không có giá trị nhỏ nhất và giá trị lớn nhất.
A. có giá trị nhỏ nhất là \(\frac{9}{4}\)
B. có giá trị lớn nhất là \(\frac{9}{4}\)
C. có giá trị lớn nhất là \(\frac{3}{2}\)
D. không có giá trị lớn nhất
A. \(a < b \Rightarrow ac < bc\)
B. \(a < b \Rightarrow \frac{1}{a} > \frac{1}{b}\)
C. a < b và c < d \( \Rightarrow ac < bd\)
D. \(a < b \Rightarrow ac < bc\,\,\,\left( {c > 0} \right)\)
A. a + c > b + d
B. a - c > b - d
C. ac > bd
D. a2 > b2
A.
\(\left\{ \begin{array}{l}
a > b\\
c > d
\end{array} \right. \Rightarrow ac > bd\)
B.
\(\left\{ \begin{array}{l}
a > b\\
c > d
\end{array} \right. \Rightarrow \frac{a}{c} > \frac{b}{d}\)
C.
\(\left\{ \begin{array}{l}
a > b\\
c > d
\end{array} \right. \Rightarrow a - c > b - d\)
D.
\(\left\{ \begin{array}{l}
a > b > 0\\
c > d > 0
\end{array} \right. \Rightarrow ac > bd\)
A. \(2\sqrt 3 \)
B. \(\sqrt[4]{3}\)
C. \(2\sqrt[4]{3}\)
D. \(\sqrt 3 \)
A. 16
B. 8
C. 4
D. 2
A. - 8 và 8
B. - 2 và 2
C. \( - 2\sqrt 2 \) và \( 2\sqrt 2 \)
D. \( - \sqrt 2 \) và \( \sqrt 2 \)
A. ac > bd
B. a - c > b - d
C. a - d > b - c
D. - ac > - bd
A. 6a > 3a
B. 3a > 6a
C. 6 - 3a > 3 - 6a
D. 6 + a > 3 + a
A. m > - n
B. n - m < 0
C. - m > - n
D. m - n < 0
A. a < c
B. a > c
C. - 3a > - 3c
D. a2 > c2
A. 1
B. 2
C. 3
D. 4
A. \({x^2} + {y^2} \ge 5\)
B. \({\left( {x - 2} \right)^2} \ge 0\)
C. \({x^2} + {\left( {5 - 2x} \right)^2} \ge 5\)
D. Tất cả đều đúng.
A. a = b = c
B. a = b = c = 1
C. \(a = b = c = \frac{1}{3}\)
D. a = 1, b = c = 0
A. 1
B. 2
C. 3
D. 4
A. Giá trị nhỏ nhất của P là \(\frac{1}{4}\)
B. Giá trị lớn nhất của P là \(\frac{1}{4}\)
C. Giá trị lớn nhất của P là \(\frac{1}{2}\)
D. P đạt giá trị lớn nhất tại \(a = \frac{1}{4}\)
A. \(\frac{{11}}{4}\)
B. \(\frac{4}{{11}}\)
C. \(\frac{{11}}{8}\)
D. \(\frac{8}{{11}}\)
A. \(f(x)\) có giá trị nhỏ nhất bằng \(\frac{1}{4}\)
B. \(f(x)\) có giá trị lớn nhất bằng \(\frac{1}{2}\)
C. \(f(x)\) có giá trị nhỏ nhất bằng \(-\frac{1}{4}\)
D. \(f(x)\) có giá trị lớn nhất bằng \(\frac{1}{4}\)
A. \(n{\left( {m - 1} \right)^2} - m{\left( {n - 1} \right)^2} \ge 0\)
B. \({m^2} + {n^2} \ge 2mn\)
C. \({\left( {m + n} \right)^2} + m - n \ge 0\)
D. \({\left( {m - n} \right)^2} \ge 2mn\)
A. a - b < 0
B. \({a^2} - ab + {b^2} < 0\)
C. \({a^2} + ab + {b^2} > 0\)
D. a - b > 0
A. \(x + y \ge 2\sqrt {xy} = 12\)
B. \(x + y \ge 2xy = 72\)
C. \(4xy \le {x^2} + {y^2}\)
D. \({\left( {\frac{{x + y}}{2}} \right)^2} \ge xy = 36\)
A. 2
B. 1
C. 0
D. 4
A. a < b
B. a > b
C. a = b
D. \(a \ne b\)
A. \(\left( {x + y} \right) \ge 4xy\)
B. \(\frac{1}{x} + \frac{1}{y} < \frac{4}{{x + y}}\)
C. \(\frac{1}{{xy}} \ge \frac{4}{{{{\left( {x + y} \right)}^2}}}\)
D. \({\left( {x + y} \right)^2} \le 2\left( {{x^2} + {y^2}} \right)\)
A. \(\frac{2}{x}\)
B. \(\frac{2}{{x + 1}}\)
C. \(\frac{2}{{x - 1}}\)
D. \(\frac{x}{2}\)
A. 2
B. \(\frac{5}{2}\)
C. \(2\sqrt 2 \)
D. 3
A. 2
B. \(\frac{1}{{\sqrt 2 }}\)
C. \({\sqrt 2 }\)
D. \(2{\sqrt 2 }\)
A. 8
B. 16
C. 4
D. \(\sqrt[3]{4}\)
A. \(\frac{5}{2}\)
B. \(\frac{1}{4}\)
C. 1
D. \(\frac{1}{2}\)
A. \(a = \frac{1}{4}\)
B. \(a = \frac{1}{2}\)
C. \(a =- \frac{1}{2}\)
D. a = 1
A. P > - 1
B. P > 1
C. P < - 1
D. \(P \le 1\)
A. \(\left| x \right| > x\)
B. \(\left| x \right| > - x\)
C. \({\left| x \right|^2} > {x^2}\)
D. \(\left| x \right| \ge x\)
A. 1
B. 2
C. 3
D. \(2\sqrt 2 \)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK