A. \(\sqrt 3 \)
B. \(-\sqrt 3 \)
C. \(\frac{{\sqrt 3 }}{3}\)
D. \(-\frac{{\sqrt 3 }}{3}\)
A. \( - \frac{{3\sqrt 5 }}{5}\)
B. \(1 - \sqrt 5 \)
C. \(\frac{{3\sqrt 5 }}{2}\)
D. \(\frac{{\sqrt 5 - 1}}{2}\)
A. \(P=\cos x+\sin x\)
B. \(P=\cos x-\sin x\)
C. \(P=\cos 2x-\sin 2x\)
D. \(P=\cos 2x+\sin 2x\)
A. \(\sin \alpha .\cos \alpha = - \frac{1}{4}\)
B. \(\sin \alpha - \cos \alpha = \pm \frac{{\sqrt 6 }}{2}\)
C. \({\sin ^4}\alpha + {\cos ^4}\alpha = \frac{7}{8}\)
D. \({\tan ^2}\alpha + {\cot ^2}\alpha = 12\)
A. P = - 1
B. P = 1
C. P = 4
D. P = - 4
A. 1
B. - 1
C. \(\frac{1}{4}\)
D. \(-\frac{1}{4}\)
A. 2
B. - 2
C. 1
D. - 1
A. \( - \frac{5}{{13}};\frac{2}{3}\)
B. \(\frac{2}{3}; - \frac{5}{{12}}\)
C. \( - \frac{5}{{13}};\frac{5}{{12}}\)
D. \(\frac{5}{{13}}; - \frac{5}{{12}}\)
A. 2
B. - 2
C. 1
D. - 1
A. \(\tan \alpha > 0,\cot \alpha > 0\)
B. \(\tan \alpha < 0,\cot \alpha < 0\)
C. \(\tan \alpha > 0,\cot \alpha < 0\)
D. \(\tan \alpha < 0,\cot \alpha > 0\)
A. 2
B. - 2
C. 3
D. - 3
A. 6
B. 8
C. 10
D. 12
A. \(\frac{{5 - \sqrt 7 }}{4}\) và \(\frac{{5 + \sqrt 7 }}{4}\)
B. \(\frac{{5 - \sqrt 5 }}{4}\) và \(\frac{{5 + \sqrt 5 }}{4}\)
C. \(\frac{{2 - \sqrt 3 }}{5}\) và \(\frac{{2 + \sqrt 3 }}{5}\)
D. \(\frac{{3 - \sqrt 2 }}{5}\) và \(\frac{{3 + \sqrt 2 }}{5}\)
A. \(P = {\sin ^2}x\)
B. \(P = {\cos ^2}x\)
C. \(P =- {\sin ^2}x\)
D. \(P = -{\cos ^2}x\)
A. \(\sin \left( {{{180}^0} - a} \right) = - \cos a\)
B. \(\sin \left( {{{180}^0} - a} \right) = - \sin a\)
C. \(\sin \left( {{{180}^0} - a} \right) = \sin a\)
D. \(\sin \left( {{{180}^0} - a} \right) = \cos a\)
A. \(\sin \left( {\frac{\pi }{2} - x} \right)=\cos x\)
B. \(\sin \left( {\frac{\pi }{2} + x} \right)=\cos x\)
C. \(\tan \left( {\frac{\pi }{2} - x} \right)=\cot x\)
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\)
A. A = 2
B. A = - 2
C. A = 1
D. A = - 1
A. B = - 1
B. B = 1
C. \(B = - \frac{1}{2}\)
D. \(B = \frac{1}{2}\)
A. \({ - 3 - \sqrt 3 }\)
B. \({ 2 - 3\sqrt 3 }\)
C. \(\frac{{2\sqrt 3 }}{{\sqrt 3 - 1}}\)
D. \(\frac{{1 - \sqrt 3 }}{{\sqrt 3 }}\)
A. 0
B. 1
C. 2
D. - 1
A. \(\sin \frac{{A + C}}{2} = \cos \frac{B}{2}\)
B. \(\cos \frac{{A + C}}{2} = \sin \frac{B}{2}\)
C. \(\sin \left( {A + B} \right) = \sin C\)
D. \(\cos \left( {A + B} \right) = \cos C\)
A. \(A = 2\sin \alpha \)
B. \(A = 2\cos \alpha \)
C. \(A = \sin \alpha - \cos \alpha \)
D. A = 0
A. 1
B. 2
C. - 1
D. 0
A. \(\sin \frac{{A + B + 3C}}{2} = \cos C\)
B. \(\cos \left( {A + B - C} \right) = - \cos 2C\)
C. \(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\)
D. \(\cot \frac{{A + B + 2C}}{2} = \tan \frac{{3C}}{2}\)
A. \(\frac{{\sqrt 3 }}{2}\)
B. \(\frac{1}{2}\)
C. \(\frac{{\sqrt 2 }}{2}\)
D. \(-\frac{{\sqrt 2 }}{2}\)
A. \(\sin \alpha = - \frac{4}{{\sqrt {41} }};\cos \alpha = - \frac{5}{{\sqrt {41} }}\)
B. \(\sin \alpha = \frac{4}{{\sqrt {41} }};\cos \alpha = \frac{5}{{\sqrt {41} }}\)
C. \(\sin \alpha = - \frac{4}{{\sqrt {41} }};\cos \alpha = \frac{5}{{\sqrt {41} }}\)
D. \(\sin \alpha = \frac{4}{{\sqrt {41} }};\cos \alpha = - \frac{5}{{\sqrt {41} }}\)
A. \(\cot x = \frac{4}{3}\)
B. \(\cos x = \frac{3}{5}\)
C. \(\sin x = \frac{3}{5}\)
D. \(\sin x = -\frac{4}{5}\)
A. 0
B. 2
C. 4
D. 8
A. \( - \frac{4}{9}\)
B. \( \frac{4}{{19}}\)
C. \( - \frac{4}{{19}}\)
D. \( \frac{4}{9}\)
A. \( - \frac{8}{{13}}\)
B. \(\frac{2}{{19}}\)
C. \(-\frac{2}{{19}}\)
D. \(-\frac{8}{{19}}\)
A. \(\sin \left( {A + C} \right) = - \sin B\)
B. \(\cos \left( {A + C} \right) = - \cos B\)
C. \(\tan \left( {A + C} \right) = \tan B\)
D. \(\cot \left( {A + C} \right) = \cot B\)
A. \(\sin C = - \sin \left( {A + B} \right)\)
B. \(\cos C = \cos \left( {A + B} \right)\)
C. \(\tan C = \tan \left( {A + B} \right)\)
D. \(\cot C = - \cot \left( {A + B} \right)\)
A. \(\sin \left( {\frac{{A + B}}{2}} \right) = \sin \frac{C}{2}\)
B. \(\cos \left( {\frac{{A + B}}{2}} \right) = - \cos \frac{C}{2}\)
C. \(\tan \left( {\frac{{A + B}}{2}} \right) = \cot \frac{C}{2}\)
D. \(\cot \left( {\frac{{A + B}}{2}} \right) = \cot \frac{C}{2}\)
A. - 1
B. 0
C. 1
D. 5
A. \(M = 1 + 3{\sin ^2}x.{\cos ^2}x\)
B. \(M = 1 + 3{\sin ^2}2x\)
C. \(M = 1 - \frac{3}{2}{\sin ^2}2x\)
D. \(M = 1 - \frac{1}{4}{\sin ^2}2x\)
A. \(\tan {15^0} = 2 - \sqrt 3 \)
B. \(\sin {15^0} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\)
C. \(\sin {15^0} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\)
D. \({\tan ^2}{15^0} + {\cot ^2}{15^0} = 14\)
A. \(\frac{{34}}{{11}}\)
B. \(\frac{{32}}{{11}}\)
C. \(\frac{{31}}{{11}}\)
D. \(\frac{{30}}{{11}}\)
A. 12
B. 14
C. 16
D. 18
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK