Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.
a. Với giá trị nào của m thì AB’C’ là tam giác vuông ?
b. Khi tam giác AB’C’ vuông tại B’, kẻ AH ⊥ BC. Chứng minh rằng B’C’H là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (AB’C’).
Ta có: \(A{C^2} = 3{a^2},AB{'^2} = 2{a^2},AC{'^2} = 3{a^2} + {m^2},\)
\(B'C{'^2} = 4{a^2} + {\left( {m - a} \right)^2}\)
a. Tam giác AB’C’ vuông ở A khi và chỉ khi :
\(5{a^2} + {m^2} - 2ma = 2{a^2} + 3{a^2} + {m^2}\)
Vậy tam giác AB’C’ vuông ở A khi và chỉ khi m = 0
Vậy tam giác AB’C’ vuông ở C’ khi và chỉ khi :
\(2{a^2} = 3{a^2} + {m^2} + 4{a^2} + {\left( {m - a} \right)^2}.\) Điều này không xảy ra.
Tam giác AB’C’ vuông ở B’ khi và chỉ khi :
\(2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2} \Leftrightarrow m = 2a\)
Vậy tam giác AB’C’ vuông ở B’ khi và chỉ khi m = 2a
b. Giả sử tam giác AB’C’ vuông ở B’, tức là m = 2a
Vì AH ⊥ BC nên BH.BC = AB2 = \({a^2} \Rightarrow BH = {a \over 2}\)
Từ đó \(HC = {{3a} \over 2}\) và \(B'{H^2} = {a^2} + {{{a^2}} \over 4} = {{5{a^2}} \over 4}\)
\(C'{H^2} = {{9{a^2}} \over 4} + 4{a^2} = {{25{a^2}} \over 4};B'C{'^2} = 5{a^2}\)
Như vậy : \(B'{H^2} + B'C{'^2} = C'{H^2}\), tức là tam giác B’C’H vuông tại B’
Tính góc giữa mp(ABC) và mp(AB’C’) khi m = 2a.
Gọi I là giao điểm của B’C’ và BC. Do BB’ // CC’ , BB’ = a, CC’ = 2a nên BC = BI, B’C’ = B’I.
Xét phép chiếu lên mp(ABC). Ta có tam giác AIC là hình chiếu của tam giác AIC’. Gọi φ là góc giữa mp(ABC) và mp(AB’C’) thì \({S_{AIC}} = {S_{AIC'}}\cos \varphi \)
Ta có: \({S_{AIC}} = 2{S_{ABC}} = {a^2}\sqrt 3 \)
Mặt khác : \({S_{AIC'}} = {1 \over 2}IC'.AB' = {1 \over 2}.2a\sqrt 5 .a\sqrt 2 = {a^2}\sqrt {10} \)
Từ đó : \(\cos \varphi = {{{a^2}\sqrt 3 } \over {{a^2}\sqrt {10} }} = {{\sqrt {30} } \over {10}}\)
Vậy góc giữa mp(ABC) và mp(AB’C’) là φ được tính bởi \(\cos \varphi = {{\sqrt {30} } \over {10}},0^\circ < \varphi < 90^\circ \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK